精英家教网 > 高中数学 > 题目详情

已知平面α,β,若直线l⊥α,则α∥β是l⊥β的


  1. A.
    充要条件
  2. B.
    充分不必要条件
  3. C.
    必要不充分条件
  4. D.
    既不充分也不必要条件
A
分析:根据一条直线垂直与两个平行平面中的一个,则一定垂直与另一个,当一条直线垂直与两个平面时,这两个平面之间的关系是平行的,得到后者可以推出前者,结合充要条件的定义,即可得到结论.
解答:∵根据一条直线垂直与两个平行平面中的一个,则一定垂直与另一个,
得到直线l⊥α,当α∥β得到l⊥β,
即前者可以推出后者;
当一条直线垂直与两个平面时,这两个平面之间的关系是平行的,得到后者可以推出前者,
∴这两个条件可以互相推出,
即α∥β是l⊥β的充要条件,
故选A.
点评:本题考查立体几何中线面之间的位置关系及判定定理,考查充要条件、必要条件与充分条件,判断充要条件的方法是若p?q为真命题且q?p为真命题,则命题p是命题q的充要条件;若p?q为假命题且q?p为假命题,则命题p是命题q的即不充分也不必要条件,本题是一个基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

10、下列命题中,正确命题的序号为
④⑤

①经过空间任意一点都可作唯一一个平面与两条已知异面直线都平行;
②已知平面α,直线a和直线b,且a∩α=a,b⊥a,则b⊥α;
③有两个侧面都垂直于底面的四棱柱为直四棱柱;
④三棱锥中若有两组对棱互相垂直,则第三组对棱也一定互相垂直;
⑤三棱锥的四个面可以都是直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

11、下列命题中正确命题的个数是(  )
①经过空间一点一定可作一平面与两异面直线都平行;
②已知平面α、β,直线a、b,若α∩β=a,b⊥a,则b⊥α;
③有两个侧面垂直于底面的四棱柱为直四棱柱;
④四个侧面两两全等的四棱柱为直四棱柱;
⑤底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;
⑥底面是等边三角形,∠APB=∠BPC=∠CPA,则三棱锥P-ABC是正三棱锥.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①经过空间一点一定可作一条直线与两异面直线都垂直;
②经过空间一点一定可作一平面与两异面直线都平行;
③已知平面α、β,直线a、b,若α∩β=a,b⊥a,则b⊥α;
④四个侧面两两全等的四棱柱为直四棱柱;
⑤底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;
其中正确命题的序号是

查看答案和解析>>

科目:高中数学 来源:2013届江西省高三第四次月考理科数学试卷(解析版) 题型:填空题

给出下列命题:

①经过空间一点一定可作一条直线与两异面直线都垂直;②经过空间一点一定可作一平面与两异面直线都平行;③已知平面,直线,若,则;④四个侧面两两全等的四棱柱为直四棱柱;⑤底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥.其中正确命题的序号是      

 

查看答案和解析>>

科目:高中数学 来源:江西师大附中2010届高三第三次模拟考试数学(理) 题型:选择题

下列命题中正确命题的个数是                                                                                 (  )

       ①经过空间一点一定可作一平面与两异面直线都平行;

       ②已知平面,直线ab,若,则

       ③有两个侧面垂直于底面的四棱柱为直四棱柱;

       ④四个侧面两两全等的四棱柱为直四棱柱;

       ⑤底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;

       ⑥底面是等边三角形,∠APB=∠BPC=∠CPA,则三棱锥PABC是正三棱锥.

       A.0      B.1       C.2       D.3

 

查看答案和解析>>

同步练习册答案