【题目】已知函数.
(1)求函数的极值;
(2)求函数在区间上的最大值.
【答案】(1)见解析(2)
【解析】
(1)首先求出函数的导函数,令解得,再对分类讨论即可得解;
(2)对分类讨论,结合(1)中的结论,计算可得;
解:(1)因为,所以,
由解得.
①当时,
- | 0 | + | |
极小值 |
所以,当时,有极小值;
②当时,
+ | 0 | - | |
极大值 |
所以,当时,有极大值;
综上,当时,当时,有极小值;
当时,当时,有极大值.
(2)当时,由(1)知,为上单调减函数,而,
所以,为上单调减函数,故的最大值;
当时,,由(1)知,为上单调减函数,而,
所以,为上单调减函数,故的最大值;
当时,由(1)知,为上单调减函数,上单调增函数,
又满足,故的最大值;
当时,由(1)知,为上单调减函数,上单调增函数,
又满足,故的最大值;
综上,.
科目:高中数学 来源: 题型:
【题目】“过大年,吃水饺”是我国不少地方过春节的一大习俗,2020年春节前夕,A市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标.
(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数(同一组中的数据用该组区间的中点值作代表);
(2)①由直方图可以认为,速冻水饺的该项质量指标值服从正态分布,利用该正态分布,求落在内的概率;
②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于内的包数为,求的分布列和数学期望.
附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为;
②若,则,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|y=ln(﹣x2﹣x+12)},B={x|m﹣1<x<2m+1,m∈R}.
(1)若m=2,求(RA)∩B;
(2)若A∩B=B,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】大西洋鲑鱼每年都要逆流而上,游回产地产卵,研究鲑鱼的科学家发现鲑鱼的游速(单位: )与其耗氧量单位数之间的关系可以表示为函数,其中为常数,已知一条鲑鱼在静止时的耗氧量为100个单位;而当它的游速为时,其耗氧量为2700个单位.
(1)求出游速与其耗氧量单位数之间的函数解析式;
(2)求当一条鲑鱼的游速不高于时,其耗氧量至多需要多少个单位?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(多选)某中学高一年级有20个班,每班50人;高二年级有30个班,每班45人.甲就读于高一,乙就读于高二.学校计划从这两个年级中共抽取235人进行视力调查,下列说法中正确的有( )
A.应该采用分层随机抽样法
B.高一、高二年级应分别抽取100人和135人
C.乙被抽到的可能性比甲大
D.该问题中的总体是高一、高二年级的全体学生的视力
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,由四个全等的直角三角形和一个正方形构成.现有五种不同的颜色可供涂色,要求相邻的区域不能用同一种颜色,则不同的涂色方案有( )
A.180B.192C.420D.480
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com