精英家教网 > 高中数学 > 题目详情

【题目】在圆上任取一点,过点轴的垂线段,垂足为,在直线,,当点在圆上运动时.

(1)求点的轨迹的方程,并指出轨迹.

(2)直线l不过原点O且不平行于坐标轴,lC有两个交点AB,线段AB的中点为M.证明:直线OM的斜率与直线l的斜率的乘积为定值.

【答案】(1),椭圆,(2)见解析.

【解析】

(1)设点的坐标为,可得,代入化简即可得结果;(2)设直线代入可得,利用韦达定理以及中点坐标公式可得 ,从而可得结论.

(1)设点的坐标为

因为在圆上,所以

,因为,且轴垂直

所以代入

可得化为

的方程为,轨迹表示焦点在轴上的椭圆.

(2)设直线lykxb(k≠0,b≠0),A(x1y1),B(x2y2),M(xMyM).

ykxb代入=1,得(2k2+1)x2+4kbx+2b2-8=0.

xMyMk·xMb.

所以直线OM的斜率kOM=-

所以kOM·k=-.

故直线OM的斜率与直线l的斜率的乘积为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点,,直线与直线相交于点,直线与直线的斜率分别记为,且

(1)求点的轨迹的方程;

(2)过定点作直线与曲线交于两点, 的面积是否存在最大值?若存在,求出面积的最大值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】m, n是两条不同的直线,是三个不同的平面, 给出下列四个命题:

m⊥α,n∥α,m⊥n;α∥β, β∥r, m⊥α,m⊥r;

m∥α,n∥α,m∥n;α⊥r, β⊥r,α∥β

其中正确命题的序号是 ( )

A. B. ②③ C. ③④ D. ①

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是双曲线 的两个焦点,PC上一点,若,且的最小内角为,则C的离心率为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,焦距为.斜率为k的直线l与椭圆M有两个不同的交点AB.

)求椭圆M的方程;

)若,求 的最大值;

)设,直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D.C,D和点 共线,求k.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点为圆的圆心, 是圆上的动点,点在圆的半径上,且有点上的点,满足.

1)当点在圆上运动时,求点的轨迹方程;

2)若斜率为的直线与圆相切,直线与(1)中所求点的轨迹交于不同的两点是坐标原点,且时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(
A.命题“x∈R,ex>0”的否定是“x∈R,ex>0”
B.命题“已知x,y∈R,若x+y≠3,则x≠2或y≠1”是真命题
C.“x2+2x≥ax在x∈[1,2]上恒成立”“(x2+2x)min≥(ax)max在x∈[1,2]上恒成立”
D.命题“若a=﹣1,则函数f(x)=ax2+2x﹣1只有一个零点”的逆命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点到准线的距离为,直线与抛物线交于两点,过这两点分别作抛物线的切线,且这两条切线相交于点.

(1)若的坐标为,求的值;

(2)设线段的中点为,点的坐标为,过的直线与线段为直径的圆相切,切点为,且直线与抛物线交于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,在其定义域上既是偶函数又在(0,+∞)上单调递减的是(
A.y=x2
B.y=x+1
C.y=﹣lg|x|
D.y=﹣2x

查看答案和解析>>

同步练习册答案