精英家教网 > 高中数学 > 题目详情

【题目】第七届世界军人运动会(以下简称武汉军运会)专题新闻发布会在武汉举行,武汉军运会会徽、吉祥物正式公布.武汉军运会将于日举行,赛期.若将名志愿者分配到两个运动场馆进行服务,每个运动场馆至少名志愿者,则其中志愿者甲、乙或甲、丙被分到同一场馆的概率为______.

【答案】

【解析】

设甲为,乙为,丙为,另外两名志愿者为,列举出所有的基本事件,并确定事件“志愿者甲、乙或甲、丙被分到同一场馆”所包含的基本事件,利用古典概型的概率公式可计算得出所求事件的概率.

设甲为,乙为,丙为,另外两名志愿者为.

表示场馆、场馆分别分配的志愿者服务.

名志愿者分配到两个运动场馆进行服务,基本事件有:,共种,

其中,志愿者甲、乙或甲、丙被分到同一场所的情况如下:,共种,

故志愿者甲、乙或甲、丙被分到同一场所的概率为.

故答案为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】将函数的图象上所有点的纵坐标不变,横坐标变为原来的,再将所得图象向右平移个单位,若得到的图象关于原点对称,则当时,的值域为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】角中,角ABC的对边分别是abc,若

1)求角A

2)若的面积为,求的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数处的切线方程为,求实数的值;

(2)若函数两处取得极值,求实数的取值范围;

(3)在(2)的条件下,若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求曲线在点的切线方程;

2)讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面ABCD为直角梯形,平面ABCD,E是棱PC上的一点.

(1)证明:平面平面 .

(2)若,F是PB的中点,,求直线DF与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当

①求函数在点处的切线方程;

②比较的大小;

2)当时,若对时,,且有唯一零点,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,函数,函数.

(1)当时,求函数的零点个数;

(2)若函数与函数的图象分别位于直线的两侧,求的取值集合

(3)对于,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四面体中, 分别是的中点.则下述结论:

①四面体的体积为

②异面直线所成角的正弦值为

③四面体外接球的表面积为

④若用一个与直线垂直,且与四面体的每个面都相交的平面去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为

其中正确的有_____.(填写所有正确结论的编号)

查看答案和解析>>

同步练习册答案