精英家教网 > 高中数学 > 题目详情

【题目】执行如图所示的程序框图,输出的结果是(
A.﹣2
B.
C.
D.3

【答案】C
【解析】解:模拟执行程序,可得
a= ,k=0
执行循环体,a=3,k=1
不满足条件k≥100,执行循环体,a=﹣2,k=2
不满足条件k≥100,执行循环体,a=﹣ ,k=3
不满足条件k≥100,执行循环体,a= ,k=4

观察规律可得a的取值周期为4,由于99=24×4+3,可得
不满足条件k≥100,执行循环体,a= ,k=100,
此时,满足条件k≥100,退出循环,输出a的值为
故选:C.
【考点精析】解答此题的关键在于理解程序框图的相关知识,掌握程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形;一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥P﹣ABCD中,AB∥CD,AB⊥AD,AB=AD=AP=2CD=2,M是棱PB上一点.
(Ⅰ)若BM=2MP,求证:PD∥平面MAC;
(Ⅱ)若平面PAB⊥平面ABCD,平面PAD⊥平面ABCD,求证:PA⊥平面ABCD;
(Ⅲ)在(Ⅱ)的条件下,若二面角B﹣AC﹣M的余弦值为 ,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=9x﹣2a3x+3:

(1)若a=1,x[0,1]时,求fx)的值域;

(2)当x[﹣1,1]时,求fx)的最小值ha);

(3)是否存在实数m、n,同时满足下列条件:①n>m>3;②当h(a)的定义域为[m,n]时,其值域为[m2,n2],若存在,求出m、n的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn=k3n﹣m,且a1=3,a3=27.
(I)求证:数列{an}是等比数列;
(II)若anbn=log3an+1 , 求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在斜三棱柱ABC﹣A1B1C1中,底面ABC是正三角形,E是AB中点,A1E⊥平面ABC.
(I)证明:BC1∥平面 A1EC;
(II)若A1A⊥A1B,且AB=2.
①求点B到平面ACC1A1的距离;
②求直线CB1与平面ACC1A1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图ABCD是平面四边形,∠ADB=∠BCD=90°,AB=4,BD=2.
(Ⅰ)若BC=1,求AC的长;
(Ⅱ)若∠ACD=30°,求tan∠BDC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ex , g(x)=kx+1.
(I)求函数y=f(x)﹣(x+1)的最小值;
(II)证明:当k>1时,存在x0>0,使对于任意x∈(0,x0)都有f(x)<g(x);
(III)若存在实数m使对任意x∈(0,m)都有|f(x)﹣g(x)|>x成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为曲线上两点,的横坐标之和为

(1)求直线的斜率;

(2)为曲线上一点,处的切线与直线平行,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某竞赛的题库系统有60%的自然科学类题目,40%的文化生活类题目(假设题库中的题目总数非常大),参赛者需从题库中抽取3个题目作答,有两种抽取方法:方法一是直接从题库中随机抽取3个题目;方法二是先在题库中按照题目类型用分层抽样的方法抽取10个题目作为样本,再从这10个题目中任意抽取3个题目.

(1)两种方法抽取的3个题目中,恰好有1个自然科学类题目和2个文化生活类题目的概率是否相同?若相同,说明理由;若不同,分别计算出两种抽取方法对应的概率.

(2)已知某参赛者抽取的3个题目恰好有1个自然科学类题目和2个文化生活类题目,且该参赛者答对自然科学类题目的概率为,答对文化生活类题目的概率为.设该参赛者答对的题目数为X,求X的分布列和数学期望.

查看答案和解析>>

同步练习册答案