精英家教网 > 高中数学 > 题目详情
x2
12
+
y2
3
=1的一个焦点为F,过椭圆中心的直线交椭圆于A、B两点,则△ABF面积最大为
 
考点:椭圆的简单性质
专题:计算题,作图题,圆锥曲线的定义、性质与方程
分析:由题意,S△ABF=S△OBF+S△AOF,从而可知当直线与y轴重合时,面积最大.
解答: 解:如图,S△ABF=S△OBF+S△AOF
则当直线与y轴重合时,面积最大,
故最大面积为
1
2
×2
3
×
12-3
=3
3

故答案为:3
3
点评:本题考查了椭圆的图形特征即面积的等量转化,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知tan(
π
7
-α)=5,则tan(
7
+α)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设P为曲线C:y=x2+2x+3上点,且曲线C在点P处切线倾斜角的取值范围为[0,
π
4
],则点P横坐标的取值范围为(  )
A、[
1
2
,1]
B、[-1,0]
C、[0,1]
D、[-1,-
1
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面ABCD⊥平面ABE,四边形ABCD是矩形,AD=AE=BE=2,M、H分别是DE、AB的中点,主(正)视图方向垂直平面ABCD时,左(侧)视图的面积为
2

(1)求证:MH∥平面BCE;
(2)求证:平面ADE⊥平面BCE.

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,直线ρcosθ-ρsinθ-3=0与圆ρ=2cosθ的位置关系是(  )
A、相交但不过圆心B、相交且过圆心
C、相离D、相切

查看答案和解析>>

科目:高中数学 来源: 题型:

己知sin2x+cos2x=1,函数f(x)=-
1
2
-
a
4
+acosx+sin2x(0≤x≤
π
2
)的最大值为2,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x2-4的零点是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=(
1
4
x+(
1
2
x+1的定义域和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知f(x)=-3x2+a(6-a)x+6.解关于a的不等式f(1)>0;
(2)设x、y>0,x+y+xy=2,求x+y的最小值.

查看答案和解析>>

同步练习册答案