精英家教网 > 高中数学 > 题目详情

如图02,在长方体ABCDA1B1C1D1中,PQR分别是棱AA1BB1BC上的点,PQABC1QPR,求证:∠D1QR=90°.


解析:

PQABAB⊥平面BC1

PQ⊥平面BC1QRPR在平面BC1的射影.

根据三垂线定理的逆定理,由C1QPRC1QQR

又因D1C1⊥平面BC1,则C1QD1Q在平面B1C的射影,根据三垂线定理,由C1QQRQRD1Q

∴ ∠D1QR=90°

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.
(Ⅰ)求证:DE∥平面A1CB;  
(Ⅱ)求证:A1F⊥BE.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京)如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.
(1)求证:DE∥平面A1CB;
(2)求证:A1F⊥BE;
(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6.D、E分别是AC、AB上的点,且DE∥BC,将△ADE沿DE折起到△A1DE的位置,使A1D⊥CD,如图2.
(Ⅰ)求证:BC⊥平面A1DC;
(Ⅱ)若CD=2,求BE与平面A1BC所成角的正弦值;
(Ⅲ)当D点在何处时,A1B的长度最小,并求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宜宾二模)如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D、E分别是AC、AB上的点,且DE∥BC,将△ADE沿DE折起到△A1DE的位置,使A1D⊥CD,如图2.
(Ⅰ)求证:平面A1BC⊥平面A1DC;
(Ⅱ)若CD=2,求BE与平面A1BC所成角的余弦值;
(Ⅲ)当D点在何处时,A1B的长度最小,并求出最小值.

查看答案和解析>>

同步练习册答案