精英家教网 > 高中数学 > 题目详情
11.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,O为AC与BD的交点,E为PB上任意一点.
(1)证明:AC⊥DE;
(2)若PD∥平面EAC,并且二面角B-AE-C的大小为60°,求PD:AD的值.

分析 (1)推导出PD⊥AC,从而AD⊥平面PBD,由此能证明AC⊥DE.
(2)连结OE,以O为原点,OA,OB,OE分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出PD:AD.

解答 证明:(1)∵PD⊥平面ABCD,
∴PD⊥AC,
又四边形ABCD是菱形,BD⊥AC,且PD∩BD=D,
∴AC⊥平面PBD,
∴AC⊥DE.
解:(2)连结OE,∵PD∥平面EAC,∴PD∥OE,
∴OE⊥平面ABCD,又O是BD的中点,故此时E为PB的中点,
以O为原点,OA,OB,OE分别为x,y,z轴,建立空间直角坐标系,
设OB=m,OE=h,则OA=$\sqrt{3}m$,
∴A($\sqrt{3}m,0,0$),B(0,m,0),E(0,0,h),
$\overrightarrow{AB}$=(-$\sqrt{3}m,m,0$),$\overrightarrow{BE}$=(0,-m,h),
向量$\overrightarrow{n}$=(0,1,0)是平面AEC的一个法向量,
设平面ABE的法向量$\overrightarrow{m}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{AB}=-\sqrt{3}mx+my=0}\\{\overrightarrow{m}•\overrightarrow{BE}=-my+hz=0}\end{array}\right.$,取x=1,得$\overrightarrow{m}$=(1,$\sqrt{3},\frac{\sqrt{3}m}{h}$),
∵二面角B-AE-C的大小为60°,
∴cos60°=$\frac{|\overrightarrow{n}•\overrightarrow{m}|}{|\overrightarrow{n}|•|\overrightarrow{m}|}$=$\frac{\sqrt{3}}{\sqrt{4+3•\frac{{m}^{2}}{{h}^{2}}}}$=$\frac{1}{2}$,解得$\frac{h}{m}=\frac{\sqrt{6}}{4}$,
∴PD:AD=h:m=$\sqrt{6}:4$.

点评 本题考查空间位置关系的判断与证明,考查二面角的求法,考查空间想象能力、推理论证能力和运算求解能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=$\left\{\begin{array}{l}{sin(x+α),x<0}\\{cos(x+β),x>0}\end{array}\right.$是偶函数,则下列结论可能成立的是(  )
A.α=$\frac{π}{4}$,β=-$\frac{π}{4}$B.$α=\frac{2π}{3},β=\frac{π}{6}$C.$α=\frac{π}{3},β=\frac{π}{6}$D.$α=\frac{5π}{6},β=\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)在[-3,4]上的图象是一条连续的曲线,且其部分对应值如表:
x-3-2-101234
f(x)6m-4-6-6-4n6
则函数f(x)的零点所在区间有(  )
A.(-3,-1)和(-1,1)B.(-3,-1)和(2,4)C.(-1,1)和(1,2)D.(-∞,-3)和(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.i表示虚数单位,则复数$\frac{i}{(1-i)^{2}}$=(  )
A.$\frac{i}{2}$B.-$\frac{i}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.α,β是两个平面,m,n是两条直线,下列四个命题错误的是(  )
A.如果m⊥n,m⊥α,n∥β,那么α⊥β
B.如果m⊥α,n∥α,那么m⊥n
C.α∥β,m?α,那么m∥β
D.如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合U={0,1,2,3,4,5,6},A={0,1,3,5},B={1,2,4},那么A∩(∁UB)=(  )
A.{6}B.{0,3,5}C.{0,3,6}D.{0,1,3,5,6}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.甲乙两种商品在过去一段时间内的价格走势如图所示,假设某人持有资金120万元,他可以在t1至t4的任意时刻买卖这两种商品,且买卖能够立即成交(其他费用忽略不计),那么他持有的资金最多可变为(  )
A.120万元B.160万元C.220万元D.240万元

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.一个多面体的直观图如图1所示,其正(主)视图,侧(左)视图,俯视图如图2所示.
(1)若多面体底面对角线AC,BD交于点O,E为线段AA1的中点,求证;OE∥平面A1C1C;
(2)求平面AA1D1与平面ABCD所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设向量$\overrightarrow{a}$=(-1,2),$\overrightarrow{b}$=(m,1),若向量$\overrightarrow{a}+2\overrightarrow{b}$与2$\overrightarrow{a}-\overrightarrow{b}$平行,则m=(  )
A.$-\frac{7}{2}$B.$-\frac{1}{2}$C.$\frac{3}{2}$D.$\frac{5}{2}$

查看答案和解析>>

同步练习册答案