精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=ax2+2ln(2-x)(a∈R),设曲线y=f(x)在点(1,f(1))处的切线为l,若l与直线x-2y+2=0垂直,求a的值.

分析 利用导数的几何意义求出x=1处的切线的斜率,再根据两直线垂直的条件:斜率之积为-1,建立方程,解之即可.

解答 解:f(x)=ax2+2ln(2-x)的导数为f′(x)=2ax-$\frac{2}{2-x}$,
即有在点(1,f(1))处的切线斜率为2a-2,
由l与直线x-2y+2=0垂直,
∴2a-2=-2,即a=0,
∴a的值为0.

点评 本题主要考查了利用导数研究曲线上某点处的切线方程,以及两直线垂直的条件等基础题知识,考查运算求解能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.集合Ma是由使f(x)=$\sqrt{x-{{log}_2}{a^2}}$的定义域为[3,+∞)的所有实数a的值组成,则集合Ma=$\left\{{-2\sqrt{2},\;2\sqrt{2}}\right\}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在研究某种药物对“H1N1”病毒的治疗效果时进行动物试验,得到以下数据:对一组150只动物服用药物,其中132只动物存活,18只动物死亡;对另一组150只动物进行常规治疗,其中114只动物存活,36只动物死亡.
(1)根据以上数据建立一个2×2列联表.
(2)试问是否在犯错误的概率不超过1%的前提下,认为该种药对治疗“H1N1”病毒有效?
附:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.150.100.050.0250.010.001
k02.0722.7063.8415.0246.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知向量$\overrightarrow{{e}_{1}}$=(cosxπ,sinxπ),$\overrightarrow{{e}_{2}}$=(sinxπ,cosxπ)(x∈R)可作为平面向量的一组基底,则x不可能的是(  )
A.$\frac{1}{3}$B.1C.$\frac{5}{4}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)求曲线y=ln(2x-1)上的点到直线2x-y+3=0的最短距离.
(2)设命题P:复数z=($\frac{1-i}{1+i}$)2-a(1-2i)+i对应的点在第二象限;命题q:不等式|a-1|≥sinx对于x∈R恒成立;如果“p且q”为假命题,“p或q”为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数y=f(x)是定义在R上的偶函数,在(-∞,0]上单调递减,且有f(3)=0,则使得$f({log_{\frac{1}{3}}}x)<0$的x的范围为(  )
A.(-3,3)B.(-∞,-3)∪(3,+∞)C.$(-∞,\frac{1}{27})∪(27,+∞)$D.$(\frac{1}{27},27)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若一动直线x=a与函数$f(x)=2{cos^2}(\frac{π}{4}+x)$,g(x)=$\sqrt{3}$cos2x的图象分别交于MN两点,则|MN|的最大值是(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求经过直线l1:3x+2y-1=0和l2:5x+2y+1=0的交点,
(1)且平行于直线l3:3x-5y+6=0的直线l的方程;
(2)且在x轴,y轴上的截距相等的直线l的方程;
(3)且直线l与x轴负半轴,y轴正半轴所围成的三角形面积最小时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知平行四边形ABCD从平面AC外一点O引向量.$\overrightarrow{OE}$=k$\overrightarrow{OA}$,$\overrightarrow{OF}$=k$\overrightarrow{OB}$,$\overrightarrow{OG}$=k$\overrightarrow{OC}$,$\overrightarrow{OH}$=k$\overrightarrow{OD}$.
(1)求证:四点E,F,G,H共面;
(2)平面AC∥平面EG.

查看答案和解析>>

同步练习册答案