精英家教网 > 高中数学 > 题目详情
已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的右焦点F2与抛物线y2=4x的焦点重合,过F2作与x轴垂直的直线交椭圆于S,T两点,交抛物线于C,D两点,且
|CD|
|ST|
=2
2

(I)求椭圆E的标准方程;
(Ⅱ)设Q(2,0),过点(-1,0)的直线l交椭圆E于M、N两点.
(i)当
QM
QN
=
19
3
时,求直线l的方程;
(ii)记△QMN的面积为S,若对满足条件的任意直线l,不等式S>λtan∠MQN恒成立,求λ的最小值.
分析:(Ⅰ)由抛物线方程,得焦点坐标,从而设出椭圆E的方程,求出|CD|,|ST|,利用条件,即可求得椭圆E的方程;
(Ⅱ)(i)分类讨论,设出直线方程,代入椭圆方程,利用向量的数量积公式及韦达定理,结合条件,即可求直线l的方程;
(ii)求出
QM
QN
的最大值是
17
2
,根据S≤λtan∠MQN恒成立,利用数量积公式,即可求λ的最小值.
解答:解:(Ⅰ)由抛物线方程,得焦点F2(1,0),∴c=1.
∴椭圆E的方程为
x2
b2+1
+
y2
b2
=1

直线x=1代入抛物线方程,可得C(1,2),D(1,-2),∴|CD|=4
直线x=1代入椭圆方程,可得|ST|=
2b2
a

|CD|
|ST|
=2
2
,∴
2a
b2
=2
2

∵a2-b2=1
a=
2
,b=1

∴椭圆E的方程为
x2
2
+y2=1

(Ⅱ)(i)设M(x1,y1),N(x2,y2),则
QM
=(x1-2,y1),
QN
(x2-2,y2),
当直线l垂直于x轴时,x1=x2=-1,y1=-y2y12=
1
2

QM
QN
=(x1-2)(x2-2)+y1y2=9-y12=
17
2
19
3
,不合题意;
直线l的斜率存在时,设方程为y=k(x+1),代入椭圆方程,可得(1+2k2)x2+4k2x+2k2-2=0
∴x1+x2=-
4k2
1+2k2
,x1x2=
2k2-2
1+2k2

∵y1=k(x1+1),y2=k(x2+1)
QM
QN
=(x1-2)(x2-2)+y1y2=(x1-2)(x2-2)+k(x1+1)•k(x2+1)
=(k2+1)x1x2+(k2-2)(x1+x2)+k2+4
=
17
2
-
13
2(1+2k2)
=
19
3

∴k2=1,∴k=±1
∴直线l的方程为x-y+1=0或x+y+1=0;
(ii)由(i)知,
QM
QN
=
17
2
-
13
2(1+2k2)
17
2

QM
QN
的最大值是
17
2

∵S≤λtan∠MQN恒成立,
1
2
|
OM
||
ON
|sin∠MQN
≤λ
sin∠MQN
cos∠MQN
恒成立
QM
QN
=
17
2
-
13
2(1+2k2)
>0
∴cos∠MQN>0
|
OM
||
ON
|cos∠MQN≤2λ
恒成立
QM
QN
≤2λ恒成立
2λ≥
17
2
,即λ≥
17
4

∴λ的最小值
17
4
点评:本题考查椭圆方程,考查直线与椭圆、抛物线方程的位置关系,考查向量的数量积公式,考查恒成立问题,考查学生分析解决问题的能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知椭圆E:
x2
a2
+
y2
b2
=1
(a>b>0),焦点为F1、F2,双曲线G:x2-y2=m(m>0)的顶点是该椭圆的焦点,设P是双曲线G上异于顶点的任一点,直线PF1、PF2与椭圆的交点分别为A、B和C、D,已知三角形ABF2的周长等于8
2
,椭圆四个顶点组成的菱形的面积为8
2

(1)求椭圆E与双曲线G的方程;
(2)设直线PF1、PF2的斜率分别为k1和k2,探求k1和k2的关系;
(3)是否存在常数λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,试求出λ的值;若不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1
(a>b>0),以F1(-c,0)为圆心,以a-c为半径作圆F1,过点B2(0,b)作圆F1的两条切线,设切点为M、N.
(1)若过两个切点M、N的直线恰好经过点B1(0,-b)时,求此椭圆的离心率;
(2)若直线MN的斜率为-1,且原点到直线MN的距离为4(
2
-1),求此时的椭圆方程;
(3)是否存在椭圆E,使得直线MN的斜率k在区间(-
2
2
,-
3
3
)内取值?若存在,求出椭圆E的离心率e的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
3
=1
(a
3
)的离心率e=
1
2
.直线x=t(t>0)与曲线 E交于不同的两点M,N,以线段MN 为直径作圆 C,圆心为 C.
 (1)求椭圆E的方程;
 (2)若圆C与y轴相交于不同的两点A,B,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•佛山二模)已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的一个交点为F1(-
3
,0)
,而且过点H(
3
1
2
)

(Ⅰ)求椭圆E的方程;
(Ⅱ)设椭圆E的上下顶点分别为A1,A2,P是椭圆上异于A1,A2的任一点,直线PA1,PA2分别交x轴于点N,M,若直线OT与过点M,N的圆G相切,切点为T.证明:线段OT的长为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+y2=1
(a>1)的离心率e=
3
2
,直线x=2t(t>0)与椭圆E交于不同的两点M、N,以线段MN为直径作圆C,圆心为C
(Ⅰ)求椭圆E的方程;
(Ⅱ)当圆C与y轴相切的时候,求t的值;
(Ⅲ)若O为坐标原点,求△OMN面积的最大值.

查看答案和解析>>

同步练习册答案