精英家教网 > 高中数学 > 题目详情

【题目】如图,已知四棱锥P﹣ABCD的底面为菱形,∠BCD=120°,AB=PC=2,AP=BP=

(1)求证:AB⊥PC;
(2)求二面角B一PC﹣D的余弦值.

【答案】
(1)证明:取AB的中点O,连接PO,CO,AC,

∵△APB为等腰三角形,∴PO⊥AB)

又∵四边形ABCD是菱形,∠BCD=120°,

∴△ACB是等边三角形,∴CO⊥AB

又CO∩PO=O,∴AB⊥平面PCO,

又PC平面PCO,∴AB⊥PC


(2)解:∵ABCD为菱形,∠BCD=120°,AB=PC=2,AP=BP=

∴PO=1,CO= ,∴OP2+OC2=PC2

∴OP⊥OC,

以O为原点,OC为x轴,OB为y轴,OP为z轴,

建立空间直角坐标系,

则A(0,﹣1,0),B(0,1,0),C( ,0,0),

P(0,0,1),D( ,﹣2,0),

=( ,﹣1,0), =( ), =(0,2,0),

设平面DCP的法向量 =(x,y,z),

,令x=1,得 =(1,0, ),

设平面PCB的法向量 =(a,b,c),

,令a=1,得 =(1, ),

cos< >= =

∵二面角B一PC﹣D为钝角,∴二面角B一PC﹣D的余弦值为﹣


【解析】(1)取AB的中点O,连接PO,CO,AC,由已知条件推导出PO⊥AB,CO⊥AB,从而AB⊥平面PCO,由此能证明AB⊥PC.(2)由已知得OP⊥OC,以O为原点,OC为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,利用向量法能求出二面角B一PC﹣D的余弦值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数 的图象向左平移 个单位,得到函数g(x)的图象,则下列关于g(x)叙述正确的是(
A.g(x)的最小正周期为2π
B.g(x)在 内单调递增
C.g(x)的图象关于 对称
D.g(x)的图象关于 对称

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图的程序框图,则输出的s=(  )

A.
B.-
C.
D.-

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】极坐标与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴.曲线C1的极坐标方程为ρ﹣2cosθ=0,曲线C1的参数方程为(t是参数,m是常数)
(Ⅰ)求C1的直角坐标方程和C2的普通方程;
(Ⅱ)若C2与C1有两个不同的公共点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2x+sinx,且f(y2﹣2y+3)+f(x2﹣4x+1)≤0,则当y≥1时, 的取值范围是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,a∈R.
(1)求函数f(x)的单调区间;
(2)若函数f(x)有两个零点x1 , x2 , (x1<x2),求证:1<x1<a<x2<a2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的参数方程为为参数).以直角坐标系的原点为极点,轴的正半轴为极轴建立坐标系,曲线的极坐标方程为.

(1)求的普通方程和的直角坐标方程;

(2)若过点的直线交于两点,与交于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设定义域为R的函数f(x)= ,则关于x的方程f2(x)+bf(x)+c=0有5个不同的实数解xi(i=1,2,3,4,5),则f(x1+x2+x3+x4+x5+2)=(
A.
B.
C.2
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}中,a1=1,an﹣an+1=anan+1 , n∈N*
(1)求数列{an}的通项公式;
(2)Sn为{an}的前n项和,bn=S2n﹣Sn , 求bn的最小值.

查看答案和解析>>

同步练习册答案