精英家教网 > 高中数学 > 题目详情

设函数f(x)=aex+数学公式+b(a>0).
(Ⅰ)求f(x)在[0,+∞)内的最小值;
(Ⅱ)设曲线y=f(x)在点(2,f(2))处的切线方程为y=数学公式,求a,b的值.

解:(Ⅰ)设t=ex(t≥1),则

①当a≥1时,y′>0,∴在t≥1上是增函数,
∴当t=1(x=0)时,f(x)的最小值为
②当0<a<1时,,当且仅当at=1(x=-lna)时,f(x)的最小值为b+2;
(Ⅱ)求导函数,可得)
∵曲线y=f(x)在点(2,f(2))处的切线方程为y=
,即,解得
分析:(Ⅰ)设t=ex(t≥1),则,求出导函数,再进行分类讨论:①当a≥1时,y′>0,在t≥1上是增函数;②当0<a<1时,利用基本不等式,当且仅当at=1(x=-lna)时,f(x)取得最小值;
(Ⅱ)求导函数,利用曲线y=f(x)在点(2,f(2))处的切线方程为y=,建立方程组,即可求得a,b的值.
点评:本题考查导数知识的运用,考查导数的几何意义,考查函数的单调性与最值,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=x(ex+ae-x),x∈R是奇函数,则实数a=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x(ex+ae-x),x∈R,是偶函数,则实数a=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•包头一模)设函数f(x)=ln(x+1)+ae-x-a,a∈R.
(Ⅰ)当a=1时,证明f(x)在(0,+∞)是增函数;
(Ⅱ)若x∈[0,+∞),f(x)≥0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评阅记分.)
A.设函数f(x)=|2x+1|-|x-4|.则不等式f(x)>2的解集为
{x|x<-7或x>
5
3
}
{x|x<-7或x>
5
3
}

B.(坐标系与参数方程选做题)曲线C:
x=-2+2cosα
y=2sinα
(α为参数),若以点O(0,0)为极点,x正半轴为极轴建立极坐标系,则该曲线的极坐标方程是
ρ=-4cosθ
ρ=-4cosθ


C.(几何证明选讲选做题) 如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P,E为⊙O上一点,弧AE=弧AC,DE交AB于F,且AB=2BP=4,则PF=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=msinx+3cosx(x∈R),试分别解答下列两小题.
( I)若函数f(x)的图象与直线y=n(n为常数)相邻两个交点的横坐标为x1=
π
12
x2=
12
,求函数y=f(x)的解析式,并写出函数f(x)的单调递增区间;
( II)当m=
3
时,在△ABC中,满足f(A)=2
3
,且BC=1,若E为BC中点,试求AE的最大值.

查看答案和解析>>

同步练习册答案