精英家教网 > 高中数学 > 题目详情
5.设O是△ABC的重心,且30sinA•$\overrightarrow{OA}$+42sinB•$\overrightarrow{OB}$+35sinC•$\overrightarrow{OC}$=$\overrightarrow{0}$,则sinB=(  )
A.$\frac{5}{7}$B.$\frac{6}{7}$C.$\frac{2\sqrt{6}}{7}$D.$\frac{\sqrt{13}}{7}$

分析 由O是△ABC的重心得:$\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{0}$,则$\overrightarrow{OA}$=$-\overrightarrow{OB}-\overrightarrow{OC}$代入式子化简,利用向量相等列出方程组,化简后由正弦定理得到边之间的关系,由余弦定理求出cosB,根据平方关系和B的范围求出sinB的值.

解答 解:∵O是△ABC的重心,∴$\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{0}$,则$\overrightarrow{OA}$=$-\overrightarrow{OB}-\overrightarrow{OC}$,
∵30sinA•$\overrightarrow{OA}$+42sinB•$\overrightarrow{OB}$+35sinC•$\overrightarrow{OC}$=$\overrightarrow{0}$,
∴30sinA•($-\overrightarrow{OB}-\overrightarrow{OC}$)+42sinB•$\overrightarrow{OB}$+35sinC•$\overrightarrow{OC}$=$\overrightarrow{0}$,
(42sinB-30sinA)•$\overrightarrow{OB}$+(35sinC-30sinA)•$\overrightarrow{OC}$=$\overrightarrow{0}$,
∵$\overrightarrow{OB}$与$\overrightarrow{OC}$不共线,∴$\left\{\begin{array}{l}{42sinB-30sinA=0}\\{35sinC-30sinA=0}\end{array}\right.$,
可得sinA=$\frac{7}{5}$sinB=$\frac{7}{6}$sinC,
由正弦定理得,b=$\frac{5}{7}$a、c=$\frac{6}{7}$a,
由余弦定理得,cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{{a}^{2}+{(\frac{6}{7}a)}^{2}-{(\frac{5}{7}a)}^{2}}{2a×\frac{6}{7}a}$=$\frac{5}{7}$,
∵0<B<π,∴sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{2\sqrt{6}}{7}$,
故选:C.

点评 本题考查利用正弦、余弦定理化简求值,向量的线性运算,以及重心的充要条件的应用,对数学思维的要求比较高,综合性强,难度大,易出错.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.学生“如花姐”是2015年我校高一年级“校园歌手大赛”的热门参赛选手之一,经统计,网络投票环节中大众对“如花姐”的投票情况是:
喜爱程度非常喜欢一般不喜欢
人数500200 100
现采用分抽样的方法从所有参与“如花姐”投票的800名观众中抽取一个样本容量为n的样本,若从不喜欢“如花姐”的100名观众中抽取的人数是5人.
(1)求n的值;
(2)若不喜欢“如花姐”的1观众中抽取的5人中恰好3名男生(记为a1,a2,a3)2名女生(记为b1,b2),现将5人看成一个总体,从中随机选出2人,列出所有可能的结果;
(3)在(2)的条件下,求选出的2人中至少有1名女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知公差不为零的等差数列{an}中,a3=7,且a1,a4,a13成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令bn=$\frac{1}{{{a_n}^2-1}}$(n∈N*),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.执行如图所示的程序框图,若任意输入区间[1,10]中实数x,求输出x大于49的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.运行如图所示的流程图:

(Ⅰ)写出输出S的和式(即S=a1+a2+…+an的形式);
(Ⅱ)求S的最后结果(结果保留2i形式的数,不含省略号).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知$\overrightarrow a$、$\overrightarrow b$、$\overrightarrow c$是同一平面内的三个向量,其中$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,3),$\overrightarrow{c}$=(-2,m)
(1)若$\overrightarrow{a}$⊥($\overrightarrow{b}$+$\overrightarrow{c}$),求|$\overrightarrow{c}$|;
(2)若k$\overrightarrow{a}$+$\overrightarrow{b}$与2$\overrightarrow{a}$-$\overrightarrow{b}$共线,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.二项式(x-$\frac{1}{x}$)8的展开式中x4的系数是(  )
A.28B.-28C.56D.-56

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若△ABC中,a=2bcosC,且sin2B+sin2C=2sin2A,则该三角形一定为(  )
A.等腰直角三角形B.等腰钝角三角形
C.等边三角形D.不存在这样的三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,已知O是△ABC内一点,∠AOB=150°,∠AOC=120°,向量$\overrightarrow{OA},\overrightarrow{OB}$,$\overrightarrow{OC}$的模分别为2,1,3,若$\overrightarrow{OC}$=m$\overrightarrow{OA}+n\overrightarrow{OB}$,则实数m+n的值为$-3-3\sqrt{3}$.

查看答案和解析>>

同步练习册答案