精英家教网 > 高中数学 > 题目详情

【题目】某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O为圆孔及轮廓圆弧AB所在圆的圆心,A是圆弧AB与直线AG的切点,B是圆弧AB与直线BC的切点,四边形DEFG为矩形,BCDG,垂足为CtanODC=EF=12 cmDE=2 cmA到直线DEEF的距离均为7 cm,圆孔半径为1 cm,则图中阴影部分的面积为________cm2

【答案】

【解析】

利用求出圆弧所在圆的半径,结合扇形的面积公式求出扇形的面积,求出直角的面积,阴影部分的面积可通过两者的面积之和减去半个单位圆的面积求得.

,由题意,所以

因为,所以

因为,所以

因为与圆弧相切于点,所以

为等腰直角三角形;

在直角中,

因为,所以

解得

等腰直角的面积为

扇形的面积

所以阴影部分的面积为.

故答案为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代数学名著,它在几何学中的研究比西方早1000多年,在《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵(qian du);阳马指底面为矩形,一侧棱垂直于底面的四棱锥,鳖膈(bie nao)指四个面均为直角三角形的四面体.如图在堑堵中,.

(1)求证:四棱锥为阳马;

(2)若,当鳖膈体积最大时,求锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数据的收集和整理在当今社会起到了举足轻重的作用,它用统计的方法来帮助人们分析以往的行为习惯,进而指导人们接下来的行动.

某支足球队的主教练打算从预备球员甲、乙两人中选一人为正式球员,他收集到了甲、乙两名球员近期5场比赛的传球成功次数,如下表:

场次

第一场

第二场

第三场

第四场

第五场

28

33

36

38

45

39

31

43

39

33

1)根据这两名球员近期5场比赛的传球成功次数,完成茎叶图(茎表示十位,叶表示个位);分别在平面直角坐标系中画出两名球员的传球成功次数的散点图;

2)求出甲、乙两名球员近期5场比赛的传球成功次数的平均值和方差;

3)主教练根据球员每场比赛的传球成功次数分析出球员在场上的积极程度和技术水平,同时根据多场比赛的数据也可以分析出球员的状态和潜力.你认为主教练应选哪位球员?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数,其中e=2.71828…为自然对数的底数.

(Ⅰ)证明:函数上有唯一零点;

(Ⅱ)记x0为函数上的零点,证明:

(ⅰ)

(ⅱ)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C的参数方程为为参数),直线,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.

1)求直线l和曲线C的极坐标方程;

2)若直线与直线l相交于点A,与曲线C相交于不同的两点MN.的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的离心率为,且过点A21).

1)求C的方程:

2)点MNC上,且AMANADMND为垂足.证明:存在定点Q,使得|DQ|为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,证明.

1存在唯一的极小值点;

2的极小值点为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数R).

1)当时,求函数的单调区间;

2)若对任意实数,当时,函数的最大值为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 的左、右焦点分别为 为坐标原点, 是双曲线上在第一象限内的点,直线分别交双曲线左、右支于另一点 ,且,则双曲线的离心率为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案