精英家教网 > 高中数学 > 题目详情
如图,抛物线C1:y2=8x与双曲线C2
x2
a2
-
y2
b2
=1(a>0,b>0)
有公共焦点F2,点A是曲线C1,C2在第一象限的交点,且|AF2|=5.
(Ⅰ)求双曲线C2的方程;
(Ⅱ)以F1为圆心的圆M与双曲线的一条渐近线相切,圆N:(x-2)2+y2=1.平面上有点P满足:存在过点P的无穷多对互相垂直的直线l1,l2,它们分别与圆M,N相交,且直线l1被圆M截得的弦长与直线l2被圆N截得的弦长的比为
3
:1
,试求所有满足条件的点P的坐标.
(Ⅰ)∵抛物线C1:y2=8x的焦点为F2(2,0),
∴双曲线C2的焦点为F1(-2,0)、F2(2,0),(1分)
设A(x0,y0)在抛物线C1:y2=8x上,且|AF2|=5,
由抛物线的定义得,x0+2=5,∴x0=3,(2分)
∴y02=8×3,∴y0=±2
6
,(3分)
|AF1|=
(3+2)2+(±2
6
)
2
=7
,(4分)
又∵点A在双曲线上,
由双曲线定义得,2a=|7-5|=2,∴a=1,(5分)
∴双曲线的方程为:x2-
y2
3
=1
.(6分)
(Ⅱ)设圆M的方程为:(x+2)2+y2=r2
双曲线的渐近线方程为:y=±
3
x

∵圆M与渐近线y=±
3
x
相切,∴
圆M的半径为d=
2
3
2
=
3
,(7分)
故圆M:(x+2)2+y2=3,(8分)
设点P(x0,y0),则l1的方程为y-y0=k(x-x0),
即kx-y-kx0+y0=0,l2的方程为y-y0=-
1
k
(x-x0)

即x+ky-x0-ky0=0,
∴点M到直线l1的距离为d1=
|2k+kx0-y0|
1+k2

点N到直线l2的距离为d2=
|x0+ky0-2|
1+k2

∴直线l1被圆M截得的弦长s=2
3-(
2k+kx0-y0
1+k2
)
2

直线l2被圆N截得的弦长t=2
1-(
x0+ky0-2
1+k2
)
2
,(11分)
由题意可得,
s
t
=
3-
(2k+kx0-y0)2
1+k2
1-
(x0+ky0-2)2
1+k2
=
3

即3(x0+ky0-2)2=(2k+kx0-y02
3
x0+
3k
y0-2
3
=2k+kx0-y0

3
x0+
3k
y0-2
3
=-2k-kx0+y0
②(12分)
由①得:(x0-
3
y0+2)k-(
3
x0+y0-2
3
)=0

∵该方程有无穷多组解,
x0-
3
y0+2=0
3
x0+y0-2
3
=0
,解得
x0=1
y0=
3

点P的坐标为(1,
3
)
.(13分)
由②得:(x0+
3
y0+2)k+(
3
x0-y0-2
3
)=0

∵该方程有无穷多组解,
x0+
3
y0+2=0
3
x0-y0-2
3
=0
,解得
x0=1
y0=-
3

点P的坐标为(1,-
3
)

∴满足条件的点P的坐标为(1,
3
)
(1,-
3
)
.(14分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点F1的坐标为(-1,0),已知椭圆E上的一点到F1、F2两点的距离之和为4.
(Ⅰ)求椭圆E的方程;
(Ⅱ)过椭圆E的右焦点F2作一条倾斜角为
π
4
的直线交椭圆于C、D,求△CDF1的面积;
(Ⅲ)设点P(4,t)(t≠0),A、B分别是椭圆的左、右顶点,若直线AP、BP分别与椭圆相交异于A、B的点M、N,求证∠MBP为锐角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设A,B分别为椭圆
x2
a2
+
y2
b2
=1(a,b>0)
的左、右顶点,椭圆长半轴的长等于焦距,且x=4为它的右准线.
(Ⅰ)求椭圆的方程;
(Ⅱ)设P为右准线上不同于点(4,0)的任意一点,若直线AP,BP分别与椭圆相交于异于A,B的点M、N,证明点B在以MN为直径的圆内.
(此题不要求在答题卡上画图)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线x2=2py(p>0)的焦点为F,顶点为O,准线为l,过该抛物线上异于顶点O的任意一点A作AA1⊥l于点A1,以线段AF,AA1为邻边作平行四边形AFCA1,连接直线AC交l于点D,延长AF交抛物线于另一点B.若△AOB的面积为S△AOB,△ABD的面积为S△ABD,则
(S△AOB)2
S△ABD
的最大值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C:x2=2py过点P(1,
1
2
)
,直线l交C于A,B两点,过点P且平行于y轴的直线分别与直线l和x轴相交于点M,N.
(1)求p的值;
(2)是否存在定点Q,当直线l过点Q时,△PAM与△PBN的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,F1、F2分别为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右两个焦点,A、B为两个顶点,已知椭圆C上的点(1,
3
2
)到F1、F2两点的距离之和为4.
(1)求椭圆C的方程和焦点坐标;
(2)过椭圆C的焦点F2作AB的平行线交椭圆于P、Q两点,求弦长|PQ|.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)有两个顶点在直线x+2y-2=0上
(1)求椭圆C的方程;
(2)当直线l:y=x+m与椭圆C相交时,求m的取值范围;
(3)设直线l:y=x+m与椭圆C交于A,B两点,O为坐标原点,若以为AB直径的圆过原点,求m的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xoy中,如图,已知椭圆
x2
9
+
y2
5
=1
的左、右顶点为A、B,右焦点为F,设过点T(t,m)的直线TA、TB与此椭圆分别交于点M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0
(1)设动点P满足(
PF
+
PB
)(
PF
-
PB
)=13
,求点P的轨迹方程;
(2)设x1=2,x2=
1
3
,求点T的坐标;
(3)若点T在点P的轨迹上运动,问直线MN是否经过x轴上的一定点,若是,求出定点的坐标;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,已知圆C1:(x+1)2+y2=1,圆C2:(x-3)2+(y-4)2=1.
(Ⅰ)若过点C1(-1,0)的直线l被圆C2截得的弦长为
6
5
,求直线l的方程;
(Ⅱ)圆D是以1为半径,圆心在圆C3:(x+1)2+y2=9上移动的动圆,若圆D上任意一点P分别作圆C1的两条切线PE,PF,切点为E,F,求
C1E
C1F
的取值范围;
(Ⅲ)若动圆C同时平分圆C1的周长、圆C2的周长,则动圆C是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.

查看答案和解析>>

同步练习册答案