精英家教网 > 高中数学 > 题目详情

【题目】下列命题中的假命题是(
A.x0∈(0,+∞),x0<sinx0
B.x∈(﹣∞,0),ex>x+1
C.x>0,5x>3x
D.x0∈R,lnx0<0

【答案】A
【解析】解:x∈(0, )时,x>sinx,所以x0∈(0,+∞),x0<sinx0不正确; x∈(﹣∞,0),令g(x)=ex﹣x﹣1,可得g′(x)=ex﹣1<0,函数是减函数,g(x)>g(0)=0,
可得x∈(﹣∞,0),ex>x+1恒成立.
由指数函数的性质的可知,x>0,5x>3x正确;
x0∈R,lnx0<0,的当x∈(0,1)时,恒成立,所以正确;
故选:A.
【考点精析】认真审题,首先需要了解命题的真假判断与应用(两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若关于x不等式xlnx﹣x3+x2≤aex恒成立,则实数a的取值范围是(
A.[e,+∞)
B.[0,+∞)
C.
D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,若函数g(x)=f(x)﹣t有三个不同的零点x1 , x2 , x3 , 且x1<x2<x3 , 则﹣ + + 的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了竖一块广告牌,要制造三角形支架,如图,要求∠ACB=60°,BC的长度大于1米,且AC比AB长0.5米,为了稳固广告牌,要求AC越短越好,则AC最短为(
A.(1+ )米
B.2米
C.(1+ )米
D.(2+ )米

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y=2x2 , 直线l:y=kx+2交C于A,B两点,M是线段AB的中点,过M作x轴的垂线C于点N.
(1)证明:抛物线C在点N处的切线与AB平行;
(2)是否存在实数k使以AB为直径的圆M经过点N,若存在,求k的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△AnBnCn的三边长分别为an , bn , cn , n=1,2,3…,若b1>c1 , b1+c1=2a1 , an+1=an , bn+1= ,cn+1= ,则∠An的最大值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|2x+1|﹣|x﹣4|.
(1)解不等式f(x)>0;
(2)若f(x)+3|x﹣4|≥m对一切实数x均成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如表提供了某厂节能降耗改造后在生产A产品过程中记录的产量x(吨)与相应的生产能耗y(吨)的几组对应数据,根据表中提供的数据,求出y关于x的线性回归方程为 =0.7x+0.35,则下列结论错误的是(

x

3

4

5

6

y

2.5

t

4

4.5


A.线性回归直线一定过点(4.5,3.5)
B.产品的生产能耗与产量呈正相关
C.t的取值必定是3.15
D.A产品每多生产1吨,则相应的生产能耗约增加0.7吨

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax+lnx,其中a为常数,设e为自然对数的底数.
(1)当a=﹣1时,求f(x)的最大值;
(2)若f(x)在区间(0,e]上的最大值为﹣3,求a的值;
(3)设g(x)=xf(x),若a>0,对于任意的两个正实数x1 , x2(x1≠x2),证明:2g( )<g(x1)+g(x2).

查看答案和解析>>

同步练习册答案