精英家教网 > 高中数学 > 题目详情
某工厂要制造A种电子装置45台,B种电子装置55台,需用薄钢板给每台装置配一个外壳,已知薄钢板的面积有两种规格:甲种薄钢板每张面积2㎡,可做A、B的外壳分别为3个和5个,乙种薄钢板每张面积3㎡,可做A、B的外壳分别为5个和6个,求两种薄钢板各用多少张,才能使总的用料面积最小?
分析:根据已知条件中解:设用甲种薄金属板x张,乙种薄金属板y张,则可做A种的外壳分别为3x+5y个,A种的外壳分别为5x+6y个,由题意得出约束条件,及目标函数,然后利用线性规划,求出最优解.
解答:解:设用甲种薄金属板x张,乙种薄金属板y张,总的用料面积为z㎡.
则可做A种的外壳为3x+5y个,B种的外壳为5x+6y个,
由题意得:
3x+5y≥45
5x+6y≥55
x,y∈N

所有薄金属板的总面积为:z=2x+3y
甲、乙两种薄钢板张数的取值范围如图中阴影部分所示(x,y取整数).
要使z最小,目标函数表示的直线过点A(
5
7
60
7
),由于其不是整数点,
故平移过点A的直线:z=2x+3y,当其经过平面区域内的点(2,8)时,
这时面积为28㎡,此时直线同时也经过点(5,6).
因此用甲、乙两种薄钢板的张数分别为2张、8张或者5张、6张,才能使总的用料面积最小.
点评:本题考查的知识点是简单的线性规划的应用,在解决线性规划的应用题时,其步骤为:①分析题目中相关量的关系,列出不等式组,即约束条件⇒②由约束条件画出可行域⇒③分析目标函数Z与直线截距之间的关系⇒④使用平移直线法求出最优解⇒⑤还原到现实问题中.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某工厂要制造A种电子装置41台,B种电子装置66台,需用薄钢板给每台装置配一个外壳,已知薄钢板的面积有两种规格:甲种薄钢板每张面积2㎡,可做A、B的外壳分别为2个和7个,乙种薄钢板每张面积5㎡,可做A、B的外壳分别为7个和9个,求两种薄钢板各用多少张,才能使总的用料面积最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂要制造A种电子装置45台,B电子装置55台,为了给每台装配一个外壳,要从两种不同的薄钢板上截取,已知甲种薄钢板每张面积为2平方米,可作A的外壳3个和B的外壳5个;乙种薄钢板每张面积3平方米,可作A和B的外壳各6个,设用这两种薄钢板分别为x,y张,
(1)写出x,y满足的约束条件;
(2)x,y分别取什么值时,才能使总的用料面积最小,最小面积为多少?

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省肇庆市高三复习必修五综合练习 题型:解答题

(本小题14分)某工厂要制造A种电子装置41台,B种电子装置66台,需用薄钢板给每台装置配一个外壳,已知薄钢板的面积有两种规格:甲种薄钢板每张面积2㎡,可做A、B的外壳分别为2个和7个,乙种薄钢板每张面积5㎡,可做A、B的外壳分别为7个和9个,求两种薄钢板各用多少张,才能使总的用料面积最小?

 

 

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某工厂要制造A种电子装置41台,B种电子装置66台,需用薄钢板给每台装置配一个外壳,已知薄钢板的面积有两种规格:甲种薄钢板每张面积2㎡,可做A、B的外壳分别为2个和7个,乙种薄钢板每张面积5㎡,可做A、B的外壳分别为7个和9个,求两种薄钢板各用多少张,才能使总的用料面积最小?
精英家教网

查看答案和解析>>

同步练习册答案