精英家教网 > 高中数学 > 题目详情
18.(1)${({\frac{1}{8}})^{-\frac{2}{3}}}-\root{4}{{{{({-3})}^4}}}+{({2\frac{1}{4}})^{\frac{1}{2}}}-{(1.5)^2}$
(2)${log_3}\sqrt{27}+lg25+lg4+{7^{{{log}_7}2}}+{(-9.8)^0}$.

分析 (1)利用有理指数幂的运算法则化简求解即可.
(2)利用对数运算法则以及有理指数幂的运算法则化简求解即可.

解答 解:(1)${(\frac{1}{8})}^{-\frac{2}{3}}-\root{4}{{(-3)}^{4}}+{(2\frac{1}{4})}^{\frac{1}{2}}-{(1.5)}^{2}$=4-3+$\frac{3}{2}$-$\frac{9}{4}$=$\frac{1}{4}$
(2)$lo{g}_{3}\sqrt{27}+lg25+lg4+{7}^{{log}_{7}2}+{(-9.8)}^{0}$=$\frac{3}{2}$+lg100+2+1=$\frac{13}{2}$.

点评 本题考查对数运算法则以及有理指数幂的运算法则的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知{an}是各项项都为正数的数列,其前n项和为Sn,且满足2anSn-an2=1
(Ⅰ)证明{Sn2}是等差数列,并求数列{an}的通项公式;
(Ⅱ)求数列{Sn2xn-1}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{1}{2}$x2-alnx(a为常数且a∈R).
(1)当a=1时求函数f(x)的单调区间;
(2)当x>1时,若$\frac{1}{2}$x2+lnx+b<$\frac{2}{3}$x3恒成立,求实常数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数$f(x)={({\frac{1}{2}})^x}$在区间[0,1]上的最大值与最小值的和为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.过坐标原点且与点($\sqrt{3}$,1)的距离都等于1的两条直线的夹角为(  )
A.90°B.45°C.30°D.60°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知动点P在圆x2+y2=4上运动,过点P作x轴的垂线段,垂足为D,求线段PD的中点M的轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.过抛物线y2=4x的焦点F作圆C:x2+y2-8x+m=0的切线,切点为M、N,且|MN|=$\frac{4\sqrt{2}}{3}$.
(1)求实数m的值:
(2)若m>12,直线l经过点F,与抛物线交于点A、B,是否存在直线l,使AB为直径的圆与圆C外切,若存在,求出直线l的方程;若不存在,请说明则由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知曲线C:$\left\{\begin{array}{l}{x=2+cosθ}\\{y=sinθ}\end{array}\right.$,直线l:$\left\{\begin{array}{l}{x=2+t}\\{y=2-2t}\end{array}\right.$(t为参数).
(1)求曲线C,直线l的普通方程;
(2)直线1与曲线C交于P,Q两点,求|PQ|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知f(x)=kx3+$\frac{2}{x}$-2(k∈R),f(lg5)=1,则f(lg$\frac{1}{5}$)=-5.

查看答案和解析>>

同步练习册答案