精英家教网 > 高中数学 > 题目详情

【题目】对于实数x,记[x]表示不超过x的最大整数,如[3.14]=3,[﹣0.25]=﹣1.若存在实数t,使得[t]=1,[t2]=2,[t3]=3…[tt]=n同时成立,则正整数n的最大值为

【答案】4
【解析】解:若[t]=1,则t∈[1,2),
若[t2]=2,则t∈[ )(因为题目需要同时成立,则负区间舍去),
若[t3]=3,则t∈[ ),
若[t4]=4,则t∈[ ),
若[t5]=5,则t∈[ ),
其中 ≈1.732, ≈1.587, ≈1.495, ≈1.431<1.495,
通过上述可以发现,当t=4时,可以找到实数t使其在区间[1,2)∩[
∩[ )∩[ )上,
但当t=5时,无法找到实数t使其在区间[1,2)∩[ )∩[ )∩[
∩[ )上,
∴正整数n的最大值4.
所以答案是:4.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】袋中装有红球3个、白球2个、黑球1个,从中任取2个,则互斥而不对立的两个事件是( )

A. 至少有一个白球;至少有一个红球 B. 至少有一个白球;红、黑球各一个

C. 恰有一个白球;一个白球一个黑球 D. 至少有一个白球;都是白球

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一个半径为1的半球材料中截取两个高度均为的圆柱,其轴截面如图所示.设两个圆柱体积之和为

(1)的表达式,并写出的取值范围;

(2)求两个圆柱体积之和的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某校举行的航天知识竞赛中,参与竞赛的文科生与理科生人数之比为13,且成绩分布在[40100],分数在80以上(80)的同学获奖.按文、理科用分层抽样的方法抽取200人的成绩作为样本,得到成绩的频率分布直方图如图所示.

(1)a的值,并计算所抽取样本的平均值 (同一组中的数据用该组区间的中点值作代表)

(2)填写下面的2×2列联表,并判断能否有超过95%的把握认为“获奖与学生的文、理科有关”

文科生

理科生

合计

获奖

5

不获奖

合计

200

附表及公式:

P(K2k0)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求的单调区间;

(2)对任意的,恒有,求正实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直三棱柱ABC﹣A1B1C1的底面是等腰直角三角形,AB=AC=2,四棱锥C﹣ABB1A1的体积等于4.

(1)求AA1的值;
(2)求C1到平面A1B1C的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax-1(a>0且a≠1).

(1)若函数y=f(x)的图象经过点P(3,4),求a的值;

(2)当a变化时,比较f(lg)与f(-2.1)的大小,并写出比较过程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,D、E分别是△ABC的边BC的三等分点,设 =m, =n,∠BAC=

(1)用 分别表示
(2)若 =15,| |=3 ,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在下列各函数中,最小值等于2的函数是(
A.y=x+
B.y=cosx+ (0<x<
C.y=
D.y=

查看答案和解析>>

同步练习册答案