精英家教网 > 高中数学 > 题目详情

(本小题满分14分)

 如图,四棱锥P—ABCD中,PB⊥底面ABCD,CD⊥PD,底面ABCD为直角梯形,AD∥BC,AB⊥BC,AB=AD=PB=3,点E在棱PA上,且PE=2EA。

(1)求直线PC与平面PAD所成角的余弦值;(6分)

(2)求证:PC//平面EBD;(4分)

(3)求二面角A—BE—D的余弦值.(4分)

 

【答案】

(1)直线PC与平面PAD所成角的余弦值. (2)见解析;(3)

【解析】

试题分析:(1)一点B为坐标原点,以BA为x轴,以BC为y轴,以BP为z轴,建立空间直角坐标至B-xyz,根据条件求出CD,PD,然后求出这两个向量的所成角即为异面直线CD与PA所成的角;

(2)欲证PC∥平面EBD,根据直线与平面平行的判定定理可知只需证PC与平面EBD内一直线平行连接AC交BD于G,连接EG,根据比例关系可知PC∥EG,而EG⊂平面EBD,PC⊄平面EBD,满足定理所需条件;

(3)先求平面EBD的法向量与平面ABE的法向量,然后利用向量的夹角公式求出此角的余弦值即二面角A-BE-D的大小的余弦值.

解:(1)建立如图所示的直角坐标系……1分

………………2分

设平面PAD法向量为

,所以 …3分

设直线PC与面PAD所成角为…4分

…………………5分

所以,直线PC与平面PAD所成角的余弦值.……………………6分

(2)连结AC交BD于G,连结EG,

 ,∴ ……………8分

 …………………………9分

…………………………10分

(3)设平面,由

考点:本试题主要考查了直线与平面的位置关系、两异面直线所成角、二面角及其平面角等有关知识,考查空间想象能力和思维能力,应用向量知识解决立体几何问题的能力.

点评:解决该试题的关键是熟练的运用线面平行的判定定理和二面角概念的理解和求解的运用。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•广东模拟)(本小题满分14分 已知函数f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化简f(x)的表达式,并求f(x)的最小正周期;
(II)当x∈[0,
π
2
]  时,求函数f(x)
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)设椭圆C1的方程为(ab>0),曲线C2的方程为y=,且曲线C1C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设AB是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。

查看答案和解析>>

科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题

(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.

查看答案和解析>>

科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题

 (本小题满分14分)

某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.

(Ⅰ)写出销售额关于第天的函数关系式;

(Ⅱ)求该商品第7天的利润;

(Ⅲ)该商品第几天的利润最大?并求出最大利润.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题

(本小题满分14分)已知的图像在点处的切线与直线平行.

⑴ 求满足的关系式;

⑵ 若上恒成立,求的取值范围;

⑶ 证明:

 

查看答案和解析>>

同步练习册答案