精英家教网 > 高中数学 > 题目详情
12.已知集合S={0,1,2,3,4,5},A是S的一个子集,当x∈A时,若有x-1∉A,且x+1∉A,则称x为A的一个“孤立元素”,那么S中无“孤立元素”的4个元素的子集共有6个,其中的一个是{0,1,2,3}.

分析 由S={0,1,2,3,4,5},结合x∈A时,若有x-1∉A,且x+1∉A,则称x为A的一个“孤立元素”,我们用列举法列出满足条件的所有集合,即可得到答案.

解答 解:∵S={0,1,2,3,4,5},
其中不含“孤立元”的集合4个元素必须是:
共有{0,1,2,3},{0,1,3,4},{0,1,4,5}},{1,2,3,4},{1,2,4,5},{2,3,4,5}共6个
那么S中无“孤立元素”的4个元素的子集A的个数是6个.
故答案为:6,{0,1,2,3}.

点评 本题考查的知识点是元素与集合关系的判断,我们要根据定义列出满足条件列出所有不含“孤立元”的集合,及所有三元集的个数,进而求出不含“孤立元”的集合个数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.设数列{an}的前n项和是Sn,令${T_n}=\frac{{{S_1}+{S_2}+…+{S_n}}}{n}$,称Tn为数列a1,a2,…,an的“理想数”,已知数列a1,a2,…,a502的“理想数”为2015,则数列6,a1,a2,…,a502的理想数为(  )
A.2014B.2015C.2016D.2017

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知a,b是两个任意的正数,且满足a+b=2,则a•b的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.现有A,B,C三种产品需要检测,产品数量如表所示:
产品ABC
数量240240360
已知采用分层抽样的方法从以上产品中共抽取了7件.
(I)求三种产品分别抽取的件数;
(Ⅱ)已知抽取的A,B,C三种产品中,一等品分别有1件,2件,2件.现再从已抽取的A,B,C三种产品中各抽取1件,求3件产品都是一等品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数$y=\frac{sinx}{tanx}$的定义域是{x|$x≠\frac{kπ}{2}$,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如果三角形三个顶点分别是O(0,0),A(0,6),B(-8,0),则它的内切圆方程为(x+2)2+(y-2)2=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知$f(x)=\left\{\begin{array}{l}f(\frac{x}{2})\;(x≥1000)\\ x(x<1000)\end{array}\right.$,则f(2016)=_504.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在等比数列{an}中,a1•a2•a3=64,a1+a3=10,a2>a1.试求:
(1)a10和S10
(2)bn=nan,求数列{bn}前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+2x,x≥0}\\{{x}^{2}-2x,x<0}\end{array}\right.$,若关于x的不等式[f(x)]2+af(x)-b2<0恰有1个整数解,则实数a的最大值是(  )
A.2B.3C.5D.8

查看答案和解析>>

同步练习册答案