【题目】如图,在直角梯形中,,, ,,,点在上,且,将沿折起,使得平面平面(如图),为中点.
(Ⅰ)求证:平面;
(Ⅱ)求四棱锥的体积;
(Ⅲ)在线段上是否存在点,使得平面?若存在,求的值;若不存在,请说明理由.
【答案】(Ⅰ)见解析(Ⅱ)(Ⅲ)见解析
【解析】
(I)证明DG⊥AE,再由面面垂直的性质可得到证明;(II)分别计算DG和梯形ABCE的面积,即可得棱锥体积;(III)过点C作CF∥AE交AB于点F,过点F作FP∥AD交DB于点P,连接PC,可证平面PCF∥平面ADE,故CP∥平面ADE,根据PF∥AD计算的值.
(Ⅰ)证明:因为为中点,,
所以.
因为平面平面,
平面平面,平面,
所以平面.
(Ⅱ)在直角三角形中,易求,则.
所以四棱锥的体积为
.
(Ⅲ) 过点C作交于点,则.
过点作交于点,连接,则.
又因为,平面平面,
所以平面.
同理平面.
又因为,
所以平面平面.
因为平面 ,
所以平面.
所以在上存在点,使得平面,且
科目:高中数学 来源: 题型:
【题目】如图是某手机商城2018年华为、苹果、三星三种品牌的手机各季度销量的百分比堆积图(如:第三季度华为销量约占,三星销量约占,苹果销量约占),根据该图,以下结论中一定正确的是( )
A. 四个季度中,每季度三星和苹果总销量之和均不低于华为的销量
B. 苹果第二季度的销量小于第三季度的销量
C. 第一季度销量最大的为三星,销量最小的为苹果
D. 华为的全年销量最大
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(Ⅰ)若曲线在点处的切线与x轴平行,求a的值;
(Ⅱ)若在处取得极大值,求a的取值范围;
(Ⅲ)当a=2时,若函数有3个零点,求m的取值范围.(只需写出结论)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知复数z满足|z|,z的实部大于0,z2的虚部为2.
(1)求复数z;
(2)设复数z,z2,z﹣z2之在复平面上对应的点分别为A,B,C,求()的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的左、右焦点分别为,,上顶点为,过点与垂直的直线交轴负半轴于点,且.
(1)求椭圆的方程;
(2)过椭圆的右焦点作斜率为1的直线与椭圆交于两点,试在轴上求一点,使得以,为邻边的平行四边形是菱形.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列满足(为常数,,,),给出下列四个结论:①若数列是周期数列,则周期必为2:②若,则数列必是常数列:③若,则数列是递增数列:④若,则数列是有穷数列,其中,所有错误结论的序号是________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com