精英家教网 > 高中数学 > 题目详情
已知函数F(x)=
1
3
ax3+bx2+cx(a≠0)
,F'(-1)=0.
(1)若F(x)在x=1处取得极小值-2,求函数F(x)的单调区间;
(2)令f(x)=F'(x),若f′(x)>0的解集为A,且满足A∪(0,1)=(0,+∞),求
c
a
的取值范围.
分析:(1)由已知中函数F(x)=
1
3
ax3+bx2+cx(a≠0)
,F'(-1)=0,且F(x)在x=1处取得极小值-2,我们易构造出一个关于a,b,c的三元一次方程组,解方程组,求出a,b,c的值,即可得到导函数的解析式,分析导函数的符号,即可求出函数F(x)的单调区间;
(2)由f(x)=F'(x),我们易求出f'(x)的解析式,若f'(x)>0的解集为A,且满足A∪(0,1)=(0,+∞),则0≤
-a-c
2a
<1
,解不等式即可得到
c
a
的取值范围.
解答:解:(1)因F'(x)=ax2+2bx+c由题意得:
F′(-1)=0
F′(1)=0
F(1)=-2
a-2b+c=0
a+2b+c=0
1
3
a+b+c=-2
解得
a=3
b=0
c=-3

所以F'(x)=3x2-3,
由F'(x)>0得x<-1或x>1,故增区间为(-∞,-1),(1,+∞)
由F'(x)<0,得-1<x<1,故减区间为(-1,1)(-1、1)
(2)由f(x)=F'(x),
得f'(x)=2ax+a+c,
由f'(x)>0,
得2ax+a+c>0
又A∪(0,1)=(0,+∞),
故a>0且0≤
-a-c
2a
<1

-3<
c
a
≤-1
点评:本题考查的知识点是利用导数研究函数的单调性,利用函数研究函数的极值,其中根据已知函数的解析式,求出函数的导函数是解答此类问题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案