精英家教网 > 高中数学 > 题目详情

【题目】设函数,其中,曲线过点,且在点处的切线方程为.

1)求 的值;

2)证明:当时,

3)若当时, 恒成立,求实数的取值范围.

【答案】(1) ;(2)见解析;(3).

【解析】试题分析:I)根据题意,将点 代入函数 ,对函数求导,将点 代入求解即可.

II)设 ,对 求导得,对求导得,根据的正负性得出的增减性,根据的正负性得出的增减性,得出结论。

III)设 ,对 求导得,根据(II)的结论得出,并求得 ,分情况讨论,求出 的取值范围即可.

试题解析:(1)

(2)

上单调递增,

上单调递增,

.

(3)设

由(2)中知,

,即时, 单调递增, ,成立.

,即时,

,令,得

时, 上单调递减, ,不成立,

综上, .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗原料1千克、原料2千克;生产乙产品1桶需耗原料2千克, 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是__________元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且 ,在数列中,

(1)求证: 是等比数列;

(2)若,求数列的前项和

(3)求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某产品的广告费用x与销售额y的统计数据如表:

广告费用x(万元)

4

2

3

5

销售额y(万元)

49

26

39

54

根据上表可得回归方程 = x+ 中的 为9.4,据此模型预报广告费用为6万元时销售额为(
A.63.6万元
B.67.7万元
C.65.5万元
D.72.0万元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x)= (sinx+cosx+|sinx﹣cosx|)的值域是(
A.[﹣1,1]
B.[﹣ ]
C.[﹣ ,1]
D.[﹣1, ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的焦点在轴上,椭圆的左顶点为,斜率为的直线交椭圆 两点,点在椭圆上, ,直线轴于点.

(Ⅰ)当点为椭圆的上顶点, 的面积为时,求椭圆的离心率;

(Ⅱ)当 时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,离心率等于,它的一个短轴端点恰好是抛物线的焦点

(1)求椭圆的方程;

(2)已知是椭圆上的两点, 是椭圆上位于直线两侧的动点.①若直线的斜率为,求四边形面积的最大值;

②当 运动时,满足,试问直线的斜率是否为定值,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,直线: ,圆:

(Ⅰ)若,请判断直线与圆的位置关系;

求直线倾斜角的取值范围;

(Ⅲ)直线能否将圆分割成弧长的比值为的两段圆弧?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,是边长为的棱形,且分别是的中点.

(1)证明:平面

(2)若二面角的大小为,求点到平面的距离.

查看答案和解析>>

同步练习册答案