【题目】设函数,其中,曲线过点,且在点处的切线方程为.
1)求, 的值;
2)证明:当时, ;
3)若当时, 恒成立,求实数的取值范围.
科目:高中数学 来源: 题型:
【题目】某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗原料1千克、原料2千克;生产乙产品1桶需耗原料2千克, 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是__________元.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某产品的广告费用x与销售额y的统计数据如表:
广告费用x(万元) | 4 | 2 | 3 | 5 |
销售额y(万元) | 49 | 26 | 39 | 54 |
根据上表可得回归方程 = x+ 中的 为9.4,据此模型预报广告费用为6万元时销售额为( )
A.63.6万元
B.67.7万元
C.65.5万元
D.72.0万元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的焦点在轴上,椭圆的左顶点为,斜率为的直线交椭圆于, 两点,点在椭圆上, ,直线交轴于点.
(Ⅰ)当点为椭圆的上顶点, 的面积为时,求椭圆的离心率;
(Ⅱ)当, 时,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心在原点,离心率等于,它的一个短轴端点恰好是抛物线的焦点
(1)求椭圆的方程;
(2)已知、是椭圆上的两点, , 是椭圆上位于直线两侧的动点.①若直线的斜率为,求四边形面积的最大值;
②当, 运动时,满足,试问直线的斜率是否为定值,请说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知且,直线: ,圆: .
(Ⅰ)若,请判断直线与圆的位置关系;
(Ⅱ)求直线倾斜角的取值范围;
(Ⅲ)直线能否将圆分割成弧长的比值为的两段圆弧?为什么?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com