精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,满足
(1)求∠ABC;
(2)若 ,D为△ABC外一点,DB=2,DC=1,求四边形ABDC面积的最大值.

【答案】
(1)解:∵

∴由正弦定理可得: sinA=sinBsinC+ sinBcosC,

∵sinA=sin(B+C)=sinBcosC+sinCcosB,

∴可得: sinBcosC+ sinCcosB=sinBsinC+ sinBcosC,

可得: sinCcosB=sinBsinC,

∵sinC≠0,解得sinB= cosB,即:tanB=

∴由B∈(0,π),可得:B=


(2)解:在△BCD中,DB=2,DC=1,

∴BC2=12+22﹣2×1×2×cosD=5﹣4cosD.

,由(1)可知△ABC为等边三角形,

∴SABC= BC2= ×(5﹣4cosD)= cosD,

又∵SBDC= =sinD,

∴S四边形ABDC= cosD+sinD= +2sin(D﹣ ).

∴当D= 时,四边形ABDC的面积有最大值,最大值为 +2.


【解析】(1)利用两角和的正弦函数公式及三角形内角和定理化简已知可得tanB= ,由B∈(0,π),即可求得B的值.(2)由已知利用余弦定理可求BC2=5﹣4cosD.利用三角形面积公式可求S△ABC= cosD, S△BDC=sinD,根据三角函数恒等变换的应用可得S四边形ABDC= +2sin(D﹣ ),利用正弦函数的图象和性质可求其最大值.
【考点精析】通过灵活运用正弦定理的定义,掌握正弦定理:即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一种画椭圆的工具如图1所示.O是滑槽AB的中点,短杆ON可绕O转动,长杆MN通过N处铰链与ON连接,MN上的栓子D可沿滑槽AB滑动,且DN=ON=1,MN=3,当栓子D在滑槽AB内作往复运动时,带动N绕O转动,M处的笔尖画出的椭圆记为C,以O为原点,AB所在的直线为x轴建立如图2所示的平面直角坐标系.
(1)求椭圆C的方程;
(2)设动直线l与两定直线l1:x﹣2y=0和l2:x+2y=0分别交于P,Q两点.若直线l总与椭圆C有且只有一个公共点,试探究:△OPQ的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记f(n)为最接近 (n∈N*)的整数,如f(1)=1,f(2)=1,f(3)=2,f(4)=2,f(5)=2,…,若 + + +…+ =4054,则正整数m的值为(
A.2016×2017
B.20172
C.2017×2018
D.2018×2019

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的几何体是由棱台ABC﹣A1B1C1和棱锥D﹣AA1C1C拼接而成的组合体,其底面四边形ABCD是边长为2的菱形,且∠BAD=60°,BB1⊥平面ABCD,BB1=2A1B1=2.
(Ⅰ)求证:平面AB1C⊥平面BB1D;
(Ⅱ)求二面角A1﹣BD﹣C1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:(x﹣6)2+(y﹣8)2=1和两点A(﹣m,0),B(m,0)(m>0),若对圆上任意一点P,都有∠APB<90°,则m的取值范围是(
A.(9,10)
B.(1,9)
C.(0,9)
D.(9,11)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的方程是y=8,圆C的参数方程是 (φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求直线l和圆C的极坐标方程;
(2)射线OM:θ=α(其中 )与圆C交于O、P两点,与直线l交于点M,射线ON: 与圆C交于O、Q两点,与直线l交于点N,求 的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (a∈R),曲线y=f(x)在点(1,f(1))处的切线与直线x+y+1=0垂直. (Ⅰ)试比较20162017与20172016的大小,并说明理由;
(Ⅱ)若函数g(x)=f(x)﹣k有两个不同的零点x1 , x2 , 证明:x1x2>e2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,则f(x)=sin(2x+ )+cos(2x+ ),则(
A.y=f(x)在(0, )单调递增,其图象关于直线x= 对称
B.y=f(x)在(0, )单调递增,其图象关于直线x= 对称
C.y=f(x)在(0, )单调递减,其图象关于直线x= 对称
D.y=f(x)在(0, )单调递减,其图象关于直线x= 对称

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=( xinωx+cosωx)cosωx﹣ ,其中ω>0,若f(x)的最小正周期为4π.
(1)求函数f(x)的单调递增区间;
(2)锐角三角形ABC中,(2a﹣c)cosB=bcosC,求f(A)的取值范围.

查看答案和解析>>

同步练习册答案