【题目】已知函数.
(Ⅰ)判断函数的单调性;
(Ⅱ)求证: .
科目:高中数学 来源: 题型:
【题目】已知 =(sin2x,2cos2x﹣1), =(sinθ,cosθ)(0<θ<π),函数f(x)= 的图象经过点( ,1).
(1)求θ及f(x)的最小正周期;
(2)当x∈ 时,求f(x)的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=x2+bx﹣alnx.
(1)若x=2是函数f(x)的极值点,1和x0是函数f(x)的两个不同零点,且x0∈(n,n+1),n∈N,求n.
(2)若对任意b∈[﹣2,﹣1],都存在x∈(1,e)(e为自然对数的底数),使得f(x)<0成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】国庆期间,某旅行社组团去风景区旅游,若旅行团人数在30人或30人以下,每人需交费用为900元;若旅行团人数多于30人,则给予优惠:每多1人,人均费用减少10元,直到达到规定人数75人为止.旅行社需支付各种费用共计15000元.
(1)写出每人需交费用y关于人数x的函数;
(2)旅行团人数为多少时,旅行社可获得最大利润?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某投资公司现提供两种一年期投资理财方案,一年后投资盈亏的情况如下表:
投资股市 | 获利 | 不赔不赚 | 亏损 | 购买基金 | 获利 | 不赔不赚 | 亏损 | |
概率 |
|
|
| 概率 |
|
|
|
(Ⅰ)甲、乙两人在投资顾问的建议下分别选择“投资股市”和“买基金”,若一年后他们中至少有一人盈利的概率大于,求的取值范围;
(Ⅱ)若,某人现有万元资金,决定在“投资股市”和“购买基金”这两种方案中选择出一种,那么选择何种方案可使得一年后的投资收益的数学期望值较大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有下列命题:
①幂函数f(x)= 的单调递减区间是(﹣∞,0)∪(0,+∞);
②若函数f(x+2016)=x2﹣2x﹣1(x∈R),则函数f(x)的最小值为﹣2;
③若函数f(x)=loga|x|(a>0,a≠1)在(0,+∞)上单调递增,则f(﹣2)<f(a+1);
④若f(x)= 是(﹣∞,+∞)上的减函数,则a的取值范围是( , );
⑤既是奇函数,又是偶函数的函数一定是f(x)=0(x∈R).
其中正确命题的序号有 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知 和 是平面内互相垂直的两条直线,它们的交点为A,异于点A的两动点B、C分别在 、 上,且BC= ,则过A、B、C三点圆的面积为( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com