精英家教网 > 高中数学 > 题目详情

对任意,函数不存在极值点的充要条件是(   )

A.                       B.

C.                           D.

 

【答案】

C

【解析】

试题分析:因为函数,所以 ,若函数不存在极值点,则恒成立且不恒为0,

所以,当a=0时,=7≥0恒成立,此时a=0满足题意;

当a≠0时,要满足题意需 ,解得 ,

综上知:若函数不存在极值点实数a的范围为

考点:函数的极值及极值点;有关恒成立问题;二次函数的有关性质。

点评:此题属于中档题,也是易错题,错误的主要原因为忽略了对二次项系数的讨论。一般情况下,若二次项系数含有字母,要想着讨论二次项系数是否为0.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
(x-a)2x
,其中a∈R.
(I)当a≠0时,求函数f(x)的极大值和极小值;
(Ⅱ)当a>4时,是否存在k∈(1,2],使得不等式f(k-cosx)≥f(k2-cos2x)对任意x∈R恒成立?若存在,求出k的范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=-x(x-a)2(x∈R),其中a∈R.
(I) 当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(II)当a≠0时,求函数f(x)的极大值和极小值;
(Ⅲ)当a>3时,在区间[-1,0]上是否存在实数k使不等式f(k-cosx)≥f(k2-cos2x)对任意的x∈R恒成立,若存在,求出k的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+bsinx,当x=
π
3
时,f(x)取得极小值
π
3
-
3

(1)求a,b的值;
(2)设直线l:y=g(x),曲线S:y=F(x).若直线l与曲线S同时满足下列两个条件:
①直线l与曲线S相切且至少有两个切点;
②对任意x∈R都有g(x)≥F(x).则称直线l为曲线S的“上夹线”.
试证明:直线l:y=x+2是曲线S:y=ax+bsinx的“上夹线”.
(3)记h(x)=
1
8
[5x-f(x)]
,设x1是方程h(x)-x=0的实数根,若对于h(x)定义域中任意的x2、x3,当|x2-x1|<1,且|x3-x1|<1时,问是否存在一个最小的正整数M,使得|h(x3)-h(x2)|≤M恒成立,若存在请求出M的值;若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln(1+ax),g(x)=x2-ax,其中a为实数.
(Ⅰ)当a=2时,求函数y=f(x)+g(x)的极小值;
(Ⅱ)是否存在实数a,使得函数y=f(x)与函数y=g(x)在区间[1,+∞)上单调性相同?若存在,请求出实数a的取值范围;若不存在,请说明理由;
(Ⅲ)若对任意的实数a∈(1,2),总存在一个与a无关的实数x1,且x1∈[
1
2
,1]
,使得f(x1)+g(x1)>m-
1
5
a2
恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省温州中学高三(上)10月月考数学试卷(理科)(解析版) 题型:解答题

已知对任意正整数n,函数恒存在极小值an(a>0),
(Ⅰ)求实数a的取值范围;
(Ⅱ)求an并判断数列{an}的单调性;
(Ⅲ)是否存在m∈N*,使am>0,若存在,求m的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案