精英家教网 > 高中数学 > 题目详情
15.已知三棱锥D-ABC的四个顶点均在半径为R的球面上,且AB=BC=$\sqrt{3}$,AC=3,若该三棱锥体积的最大值为$\frac{3\sqrt{3}}{4}$,则R=(  )
A.1B.2C.3D.$\frac{2}{3}$

分析 如图所示,由AB=BC=$\sqrt{3}$,AC=3,利用余弦定理可得:$B=\frac{2π}{3}$,S△ABC=$\frac{3\sqrt{3}}{4}$.当DB⊥平面ABC时,该三棱锥取得体积的最大值为$\frac{3\sqrt{3}}{4}$.△ABC的外接圆的圆心为B,半径为r,利用正弦定理可得:2r=$\frac{3}{sin\frac{2π}{3}}$,由VD-ABC=$\frac{1}{3}×DB×\frac{3\sqrt{3}}{4}$=$\frac{3\sqrt{3}}{4}$,解得DB.设三棱锥D-ABC的外接球的球心为O,在Rt△OBC中,R2=(3-R)2+$(\sqrt{3})^{2}$,解出即可.

解答 解:如图所示,
由AB=BC=$\sqrt{3}$,AC=3,
可得cosB=$\frac{(\sqrt{3})^{2}+(\sqrt{3})^{2}-{3}^{2}}{2×\sqrt{3}×\sqrt{3}}$=-$\frac{1}{2}$,
B∈(0,π),
∴$B=\frac{2π}{3}$,
∴S△ABC=$\frac{1}{2}×(\sqrt{3})^{2}sin\frac{2π}{3}$=$\frac{3\sqrt{3}}{4}$.
当DB⊥平面ABC时,该三棱锥取得体积的最大值为$\frac{3\sqrt{3}}{4}$,
△ABC的外接圆的圆心为B,半径为r,可得:2r=$\frac{3}{sin\frac{2π}{3}}$=2$\sqrt{3}$,r=$\sqrt{3}$.
由VD-ABC=$\frac{1}{3}×DB×\frac{3\sqrt{3}}{4}$=$\frac{3\sqrt{3}}{4}$,
解得DB=3.
设三棱锥D-ABC的外接球的球心为O,
在Rt△OBC中,R2=(3-R)2+$(\sqrt{3})^{2}$,
解得R=2.
故选:B.

点评 本题考查了空间位置关系、球的性质、三棱锥的体积、余弦定理、勾股定理,考查了空间想象能力、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知抛物线y2=2px的准线与x2-y2=2的左准线重合,则抛物线的焦点为(1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2
(1)若F为PC的中点,求证:EF⊥平面PAC;
(2)求四棱锥P-ABCD的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知B1、B2是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)短轴上的两个顶点,点P是椭圆上不同于短轴端点的任意一点,点Q与点P关于y轴对称,则下列四个命题中,其中正确的是②③.
①直线PB1与PB2的斜率之积为定值-$\frac{{a}^{2}}{{b}^{2}}$;
②$\overrightarrow{P{B}_{1}}$•$\overrightarrow{P{B}_{2}}$>0;
③△PB1B2的外接圆半径的最大值为$\frac{{a}^{2}+{b}^{2}}{2a}$;
④直线PB1与QB2的交点M的轨迹为双曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若曲线C1:$\left\{{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}}\right.$(θ为参数),曲线C2:$\left\{{\begin{array}{l}{x=acosϕ}\\{y=bsinϕ}\end{array}}\right.$(ϕ为参数),以O为极点,x的正半轴为极轴建立极坐标系,射线l:θ=α与C1,C2分别交于P,Q两点,当α=0时,|PQ|=2,当$α=\frac{π}{2}$时,P与Q重合.
(Ⅰ)把C1、C2化为普通方程,并求a,b的值;
(Ⅱ)直线l:$\left\{{\begin{array}{l}{x=1-\frac{{\sqrt{2}}}{2}t}\\{y=-1+\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$(t为参数)与C2交于A,B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,已知圆G:x2+y2-2x-$\sqrt{2}$y=0经过椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点F及上顶点B,过椭圆外一点(m,0)(m>a)且倾斜角为$\frac{5}{6}$π的直线l交椭圆于C,D两点.
(1)求椭圆的方程;
(2)若$\overrightarrow{FC}$•$\overrightarrow{FD}$=0,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知x+y+1=0,那么$\sqrt{(x+2{)^2}+{{(y+3)}^2}}$的最小值为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在正棱柱ABCD一A1B1C1D1中,AA1=2AB,若E,F分别为线段A1D1,CC1的中点.求:
(1)直线EF与平面ABB1A1所成角的余弦值为$\frac{\sqrt{182}}{14}$.
(2)二面角A1-DB-C1的余弦值;
(3)二面角A1-DB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x3+ax2+bx+1,记f(x)的导数为f′(x).
(1)若曲线f(x)在点(1,f(1))处的切线斜率为-3,且x=2时y=f(x)有极值,求函数f(x)的解析式;
(2)在(1)的条件下,求函数f(x)在[-1,1]上的最大值和最小值.

查看答案和解析>>

同步练习册答案