精英家教网 > 高中数学 > 题目详情
设奇函数f(x)的定义域为(﹣∞,0)∪(0+∞),且在(0,+∞)上为增函数.
(1)若f(1)=0,解关于x的不等式:f(1+logax)>0(0<a<1).
(2)若f(﹣2)=﹣1,当m>0,n>0时,恒有f(mn)=f(m)+f(n),求|f(t)+1|<1时,t的取值范围.
解:(1)∵奇函数f(x)在(0,+∞)上为增函数,则在(﹣∞,0)也单调递增
∵f(1)=﹣f(﹣1)=0
∴f(﹣1)=0
当x>1或﹣1<x<0时,f(x)>0;
当0<x<1或x<﹣1时,f(x)<0
∵f(1+logax)>0
∴1+logax>1或﹣1<1+logax<0
∵0<a<1
∴0<x<1或a﹣1<x<2﹣2
(2)∵f(﹣2)=﹣1
∴f(2)=﹣f(﹣2)=1
∵m>0,n>0时,恒有f(mn)=f(m)+f(n),
∴f(4)=2f(2)=2,f(﹣4)=﹣2,f(1)=2f(1),
则f(1)=﹣f(﹣1)=0
∵|f(t)+1|<1
∴﹣2<f(t)<0
∴﹣4<t<﹣1
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列说法中:
①函数f(x)=
1
lgx
在(0,+∞)
是减函数;
②在平面上,到定点(2,-1)的距离与到定直线3x-4y-10=0距离相等的点的轨迹是抛物线;
③设函数f(x)=cos(
3
x+
π
6
)
,则f(x)+f'(x)是奇函数;
④双曲线
x2
25
-
y2
16
=1
的一个焦点到渐近线的距离是5;
其中正确命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

下列说法中:
①函数数学公式是减函数;
②在平面上,到定点(2,-1)的距离与到定直线3x-4y-10=0距离相等的点的轨迹是抛物线;
③设函数数学公式,则f(x)+f'(x)是奇函数;
④双曲线数学公式的一个焦点到渐近线的距离是5;
其中正确命题的序号是________.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年河北省衡水市故城县郑口中学高二(下)期末数学试卷(解析版) 题型:填空题

下列说法中:
①函数是减函数;
②在平面上,到定点(2,-1)的距离与到定直线3x-4y-10=0距离相等的点的轨迹是抛物线;
③设函数,则f(x)+f'(x)是奇函数;
④双曲线的一个焦点到渐近线的距离是5;
其中正确命题的序号是   

查看答案和解析>>

同步练习册答案