精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=2sin(ωx+φ)(ω>0,﹣π<φ<0)在区间 上单调递增,且函数值从﹣2增大到0.若 ,且f(x1)=f(x2),则f(x1+x2)=(
A.
B.
C.
D.

【答案】A
【解析】解:函数f(x)=2sin(ωx+φ)(ω>0,﹣π<φ<0)在区间 上单调递增,且函数值从﹣2增大到0,

∴ω +φ=2kπ﹣ ,ω +φ=2kπ,k∈Z,∴ω= ,∴φ=﹣ ,f(x)=2sin( x﹣ ),且f(x)的图象关于直线x= 对称.

,且f(x1)=f(x2),则 = ,∴x1+x2=

则f(x1+x2)=f( )=2sin( )=2sin(﹣ )=﹣

故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在这个正方体中,

平行;
是异面直线;
是异面直线;
是异面直线;
以上四个命题中,正确命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=x3+a|x2﹣1|,a∈R,则对于不同的实数a,则函数f(x)的单调区间个数不可能是(
A.1个
B.2个
C.3个
D.5个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l过点A(2,4),且被平行直线l1:x-y+1=0与l2:x-y-1=0所截的线段中点M在直线x+y-3=0上,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合 ,分别求适合下列条件的实数a的值.
(1)
(2) .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥P﹣ABCD中,底面ABCD是边长为1的正方形,PA⊥平面ABCD,PA=AB,M,N分别为PB,AC的中点,
(1)求证:MN∥平面PAD;
(2)求点B到平面AMN的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以原点为O极点,以x轴正半轴为极轴,圆C的极坐标方程为ρ=4
(1)将圆C的极坐标方程化为直角坐标方程;
(2)过点P(2,0)作斜率为1直线l与圆C交于A,B两点,试求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班从3名男生a,b,c和2名女生d,e中任选3名代表参加学校的演讲比赛,则男生a和女生d至少有一人被选中的概率为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在平行四边形ABCD中,已知AD=2AB=2a,BD= ,AC∩BD=E,将其沿对角线BD折成直二面角.

求证:
(1)AB⊥平面BCD;
(2)平面ACD⊥平面ABD.

查看答案和解析>>

同步练习册答案