精英家教网 > 高中数学 > 题目详情
给出定义:若,则m叫做离实数x最近的整数,记作{x},即{x}=m.在此基础上有函数f(x)=|x-{x}|(x∈R).对于函数f(x)给出如下判断.
①函数y=f(x)是偶函数;②函数f(x)是周期函数;③函数y=f(x)在区间上单调递增;
④函数y=f(x)的图象关于直线对称;⑤函数y=f(x)的图象关于直线x=k(k∈Z)对称.
以上判断中正确的结论有    .(写出所有正确结论的序号)
【答案】分析:①通过判断f(-x)是否等于f(x),来判断函数的奇偶性.②利用周期性的定义,若函数满足f(x+T)=f(x),则函数为周期是T的周期函数.③可举出不成立的情况,说明函数y=f(x)在区间上不是单调递增.④⑤利用若函数满足f(a-x)=f(x),则函数对称轴为x=,来判断函数的对称性.
解答:解:∵,∴
∴f(-x)=|-x-{-x}|=|-x-(-m)|=|x-m|,f(x)=|x-{x}|=|x-m|
∴f(-x)=f(x)∴①正确
,∴
{x+1}=m+1
∴f(x+1)=|x+1-{x+1}|=|x+1-(m+1)|=|x-m|=f(x)
∴函数f(x)是周期函数,∴②正确.
,且{}=0,{}=0
不满足区间上单调递增,∴③错误
,∴
∴{2k+1-x}=2k+1-m
∴f(2k+1-x)=|2k+1-x-{2k+1-x}|=|2k+1-x-(2k+1-m)|=|x-{x}|=f(x)
∴函数y=f(x)的图象关于直线对称
∴④正确
,∴
∴{2k-x}=2k-m
∴f(2k-x)=|2k-x-{2k-x}|=|2k-x-(2k-m)|=|x-{x}|=f(x)
∴函数y=f(x)的图象关于直线x=k(k∈Z)对称,⑤正确
故答案为①②④⑤
点评:本题主要考查了函数奇偶性,周期性,单调性,对称性的判断,属于性质的综合.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:单选题

给出定义:若数学公式(其中m为整数),则m叫离实数x最近的整数,记作[x]=m,已知f(x)=|[x]-x|,下列四个命题:
①函数f(x)的定义域为R,值域为数学公式; ②函数f(x)是R上的增函数;
③函数f(x)是周期函数,最小正周期为1; ④函数f(x)是偶函数,
其中正确的命题的个数是


  1. A.
    4
  2. B.
    3
  3. C.
    2
  4. D.
    1

查看答案和解析>>

科目:高中数学 来源:2012-2013学年北京市海淀区八一中学高三(上)周练数学试卷(2)(理科)(解析版) 题型:选择题

给出定义:若(其中m为整数),则m叫离实数x最近的整数,记作[x]=m,已知f(x)=|[x]-x|,下列四个命题:
①函数f(x)的定义域为R,值域为; ②函数f(x)是R上的增函数;
③函数f(x)是周期函数,最小正周期为1;  ④函数f(x)是偶函数,
其中正确的命题的个数是( )
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中数学 来源:2012年北京市门头沟区高考数学一模试卷(文科)(解析版) 题型:选择题

给出定义:若(其中m为整数),则m叫离实数x最近的整数,记作[x]=m,已知f(x)=|[x]-x|,下列四个命题:
①函数f(x)的定义域为R,值域为; ②函数f(x)是R上的增函数;
③函数f(x)是周期函数,最小正周期为1;  ④函数f(x)是偶函数,
其中正确的命题的个数是( )
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中数学 来源:2012年北京市门头沟区高考数学一模试卷(理科)(解析版) 题型:解答题

给出定义:若(其中m为整数),则m叫离实数x最近的整数,记作[x]=m,已知f(x)=|[x]-x|,下列四个命题:
①函数f(x)的定义域为R,值域为;   ②函数f(x)是R上的增函数;
③函数f(x)是周期函数,最小正周期为1;    ④函数f(x)是偶函数,
其中正确的命题是   

查看答案和解析>>

科目:高中数学 来源:北京模拟题 题型:填空题

给出定义:若(其中m为整数),则m叫离实数x最近的整数,记作[x]=m,已知f(x)=|[x]﹣x|,下列四个命题:
①函数f(x)的定义域为R,值域为;  
②函数f(x)是R上的增函数;
③函数f(x)是周期函数,最小正周期为1;    
④函数f(x)是偶函数,
其中正确的命题是(    )。

查看答案和解析>>

同步练习册答案