精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x+
ax
-a

(1)若方程f(x)=0有正根,求实数a的取值范围;
(2)设g(x)=|xf(x)|,且g(x)在区间[0,1]上是减函数,求实数a的取值范围.
分析:(1)根据方程f(x)=0有正根,转化为方程x2-ax+a=0有正根,对方程进行有异号根,和两正根或一零根一正根进行讨论,即可求得实数a的取值范围;
(2)求出并配方得g(x)=|(x-
a
2
)
2
+a-
a2
4
|
,根据g(x)的图象特征,分a-
a2
4
≥0
a-
a2
4
<0
时进行讨论,即可求得结果.
解答:解:(1)方程x+
a
x
-a=0
有正根?方程x2-ax+a=0有正根.△=a2-4a
①当△=0,即a=0或a=4时,经检验a=4符合题意.
②当△>0,即a>4或a<0时,设方程x2-ax+a=0的两个根为x1、x2
∵a>4时,使得
x1+x2>0
x1x2>0
成立,所以a>4符合题意∵a<0时,使得x1x2<0成立,所以a<0符合题意.
综上,a≥4或a<0
(2)g(x)=|(x-
a
2
)2+a-
a2
4
|

①当a-
a2
4
≥0
即0≤a≤4时,g(x)在区间(-∞,
a
2
]
上是减函数,又已知g(x)在区间[0,1]上是减函数,
a
2
≥1
即a≥2,
∴2≤a≤4
②当a-
a2
4
<0
即a>4或a<0时,设方程g(x)=0的两根为x1,x2且x1<x2,此时g(x)
在区间(-∞,x1]或区间[
a
2
x2]
上是减函数,若[0,1]?(-∞,x1],则x1≥1?
a
2
>1
1•f(1)>0
得a>2
∴a>4
若[0,1]?[
a
2
x2]
,则
a
2
≤0
x2≥1
?
a
2
≤0
1•f(1)≤0
此时a不存在
综上,a≥2
点评:本题考查一元二次方程的根的情况以及y=|f(x)|函数的图象特点,体现了分类讨论的数学思想方法,考查运算能力和灵活应用知识分析解决问题的能力,属难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x-2m2+m+3(m∈Z)为偶函数,且f(3)<f(5).
(1)求m的值,并确定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在实数a,使g(x)在区间[2,3]上的最大值为2,若存在,请求出a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:浙江省东阳中学高三10月阶段性考试数学理科试题 题型:022

已知函数f(x)的图像在[a,b]上连续不断,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值,若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.已知函数f(x)=x2,x∈[-1,4]为[-1,4]上的“k阶收缩函数”,则k的值是_________.

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:2009-2010学年河南省许昌市长葛三高高三第七次考试数学试卷(理科)(解析版) 题型:选择题

已知函数f(x)、g(x),下列说法正确的是( )
A.f(x)是奇函数,g(x)是奇函数,则f(x)+g(x)是奇函数
B.f(x)是偶函数,g(x)是偶函数,则f(x)+g(x)是偶函数
C.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)一定是奇函数或偶函数
D.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)可以是奇函数或偶函数

查看答案和解析>>

同步练习册答案