精英家教网 > 高中数学 > 题目详情

已知函数).
(1)若的定义域和值域均是,求实数的值;
(2)若对任意的,总有,求实数的取值范围.

解析试题分析:(1)由二次函数性质,结合定义域、值域,列出等式求解.通常要配方化为二次函数的顶点式,根据定义域及对称轴确定单调区间;(2)根据单调性求出最大值和最小值,再解不等式.
试题解析:(1)∵),∴上是减函数,又定义域和值域均为,∴ ,     即  , 解得 .(5分)
(2)若,又,且,

∵对任意的,总有
, 即 ,解得
, ∴.若,                
显然成立, 综上.  (12分)
考点:函数得定义域、值域、单调性、最大值与最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

用定义证明函数f(x)=x2+2x-1在(0,1]上是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数是定义在R上的奇函数,对任意实数成立.
(1)证明是周期函数,并指出其周期;
(2)若,求的值;
(3)若,且是偶函数,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是同时符合以下性质的函数组成的集合:
,都有;②上是减函数.
(1)判断函数()是否属于集合,并简要说明理由;
(2)把(1)中你认为是集合中的一个函数记为,若不等式对任意的总成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 满足
(1)求常数的值 ;
(2)解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义在上的函数同时满足以下条件:①函数上是减函数,在上是增函数;②是偶函数;③函数处的切线与直线垂直.
(Ⅰ)求函数的解析式;
(Ⅱ)设,若存在使得,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求上的最小值;
(2)若函数上为增函数,求正实数的取值范围;
(3)若关于的方程在区间内恰有两个相异的实根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数的图像在处取得极值4.
(1)求函数的单调区间;
(2)对于函数,若存在两个不等正数,当时,函数的值域是,则把区间叫函数的“正保值区间”.问函数是否存在“正保值区间”,若存在,求出所有的“正保值区间”;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数处取得极值 .
(I)求实 数a和b.         (Ⅱ)求f(x)的单调区间

查看答案和解析>>

同步练习册答案