精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=x3+x2-x+1,求函数f(x)的单调减区间为(-1,$\frac{1}{3}$).

分析 先对函数求导f'(x)=3x2+2x-1=(3x-1)(x+1),再根据f'(x)<0解一元二次不等式,即可得出原函数的单调递减区间.

解答 解:先求导得f'(x)=3x2+2x-1=(3x-1)•(x+1),
要求函数f(x)的单调递减区间,
只需令f'(x)<0,
即:(3x-1)•(x+1)<0,
解得,x∈(-1,$\frac{1}{3}$),
因此,函数f(x)的单调递减区间为:(-1,$\frac{1}{3}$).
说明:单调减区间也可以写成[-1,$\frac{1}{3}$].

点评 本题主要考查了运用导数求函数的单调区间,涉及导数的运算和一元二次不等式的解法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知集合A={-1,1,2,},B={x|(x-1)(x-3)≤0},则A∩B=(  )
A..{1,2}B.{1}C.{-1,1}D..∅

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=|log2|x-2||+k有四个零点x1,x2,x3,x4,则x1+x2+x3+x4+k的取值范围为(  )
A.(8,+∞)B.(4,+∞)C.(-∞,8)D.(-∞,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知二次函数f(x)=x2+x的定义域为D恰是不等式$\frac{2}{x+1}≥1$的解集,其值域为A,函数g(x)=x3-3tx+$\frac{1}{2}t$的定义域为[0,1],值域为B.
(1)求函数f(x)定义域为D和值域A;
(2)是否存在负实数t,使得A⊆B成立?若存在,求负实数t的取值范围;若不存在,请说明理由;
(3)若函数g(x)=x3-3tx+$\frac{1}{2}t$在定义域[0,1]上单调递减,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)=a(\frac{1}{{{a^x}-1}}+\frac{1}{2})$,其中a>1.
(1)判断并证明函数f(x)的奇偶性;
(2)判断并证明函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.与双曲线与$\frac{x^2}{3}-{y^2}=1$有共同渐近线且与椭圆$\frac{x^2}{3}+{y^2}=1$有共同焦点,则此双曲线的方程为$\frac{{x}^{2}}{\frac{3}{2}}-\frac{{y}^{2}}{\frac{1}{2}}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数y=x+$\frac{3}{x-2}$(x>2),当x=2+$\sqrt{3}$,函数y有最小值是2$\sqrt{3}$+2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x2-4x-4.
(1)若函数定义域为(-1,1],求函数值域和最值
(2)若函数定义域为[0,3),求函数值域和最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.作短轴长为2b的椭圆的内接矩形,若该矩形面积的最大值的取值范围是[3b2,4b2],则椭圆离心率的取值范围是(  )
A.[$\frac{\sqrt{3}}{2}$,1)B.[$\frac{\sqrt{5}}{3}$,$\frac{\sqrt{3}}{2}$]C.(0,$\frac{\sqrt{5}}{3}$]D.(0,$\frac{\sqrt{3}}{2}$]

查看答案和解析>>

同步练习册答案