精英家教网 > 高中数学 > 题目详情

【题目】若无穷数列满足:恒等于常数,则称具有局部等差数列.

1)若具有局部等差数列,且,求

2)若无穷数列是等差数列,无穷数列是公比为正数的等比数列,,判断是否具有局部等差数列,并说明理由;

3)设既具有局部等差数列,又具有局部等差数列,求证具有局部等差数列.

【答案】见解析

【解析】解:(1)由题意得

于是,又因为,代入解得………………3

(2)的公差为的公比为

所以

不恒为常数

所以不具有局部等差数列………………8

(3)由题意得:当等差数列 也成等差数列

所以当

于是当等差数列,因此),

从而当等差数列,公差为

由当

所以

因此当等差数列,公差为 具有局部等差数列.………………16

【命题意图】本题考查等差数列、等比数列的通项公式,数列单调性,反证法等基础知识,意在考查逻辑思维及推理能力、运算求解能力、分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设全集U=R,集合A={x|﹣1≤x<3},B={x|2x﹣4≥x﹣2}.
(1)求U(A∩B);
(2)若集合C={x|2x+a>0},满足B∪C=C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,已知曲线的参数方程为为参数,).

(Ⅰ)当时,若曲线上存在两点关于点成中心对称,求直线的参数方程;

(Ⅱ)在以原点为极点,轴正半轴为极轴的极坐标系中,极坐标方程为的直线与曲线相交于两点,若,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左焦点为,设是椭圆的两个短轴端点,是椭圆的长轴左端点.

(Ⅰ)当时,设点,直线交椭圆,且直线的斜率分别为,求的值;

(Ⅱ)当时,若经过的直线与椭圆交于两点,O为坐标原点,求的面积之差的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)若不等式恒成立,求的值;

(2)若内有两个极值点,求负数的取值范围;

(3)已知若对任意实数总存在实数使得成立求正实数的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是正项数列的前项和,满足.

)求数列通项公式

)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C对应边分别是a,b,c,c=2,sin2A+sin2B﹣sin2C=sinAsinB.
(1)若sinC+sin(B﹣A)=2sin2A,求△ABC面积;
(2)求AB边上的中线长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 )为奇函数,且相邻两对称轴间的距离为.

(1)当时,求的单调递减区间;

(2)将函数的图象沿轴方向向右平移个单位长度,再把横坐标缩短到原来的(纵坐标不变),得到函数的图象.当时,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为2的正方体中, 分别是棱 的中点,点 分别在棱 上移动,且.

(1)当时,证明:直线平面

(2)是否存在,使面与面所成的二面角为直二面角?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案