精英家教网 > 高中数学 > 题目详情

【题目】某校为研究学生语言学科的学习情况,现对高二200名学生英语和语文某次考试成绩进行抽样分析.将200名学生编号为001,002,…,200,采用系统抽样的方法等距抽取10名学生,将10名学生的两科成绩(单位:分)绘成折线图如下:
(Ⅰ)若第一段抽取的学生编号是006,写出第五段抽取的学生编号;
(Ⅱ)在这两科成绩差超过20分的学生中随机抽取2人进行访谈,求2人成绩均是语文成绩高于英语成绩的概率;
(Ⅲ)根据折线图,比较该校高二年级学生的语文和英语两科成绩,写出你的结论和理由.

【答案】解:(Ⅰ)第一段抽取的学生编号是006,间隔为20,第五段抽取的学生编号为086;

(Ⅱ)这两科成绩差超过20分的学生,共5人,语文成绩高于英语成绩,有3人,从中随机抽取2人进行访谈,有 =10种,2人成绩均是语文成绩高于英语成绩,有3种,故2人成绩均是语文成绩高于英语成绩的概率是

(Ⅲ)根据折线图,可以估计该校高二年级学生的语文成绩平均分高,语文成绩相对更稳定


【解析】(Ⅰ)第一段抽取的学生编号是006,间隔为20,即可写出第五段抽取的学生编号;(Ⅱ)确定基本事件的个数,可得结论;(Ⅲ)根据折线图,可以估计该校高二年级学生的语文成绩平均分高,语文成绩相对更稳定.
【考点精析】解答此题的关键在于理解系统抽样方法的相关知识,掌握把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本;第一个样本采用简单随机抽样的办法抽取.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某大学为调研学生在A,B两家餐厅用餐的满意度,从在A,B两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行评分,满分均为60分.整理评分数据,将分数以10为组距分成6组:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60],得到A餐厅分数的频率分布直方图,和B餐厅分数的频数分布表:

B餐厅分数频数分布表

分数区间

频数

[0,10)

2

[10,20)

3

[20,30)

5

[30,40)

15

[40,50)

40

[50,60]

35

定义学生对餐厅评价的“满意度指数”如下:

分数

[0,30)

[30,50)

[50,60]

满意度指数

0

1

2


(Ⅰ)在抽样的100人中,求对A餐厅评价“满意度指数”为0的人数;
(Ⅱ)从该校在A,B两家餐厅都用过餐的学生中随机抽取1人进行调查,试估计其对A餐厅评价的“满意度指数”比对B餐厅评价的“满意度指数”高的概率;
(Ⅲ)如果从A,B两家餐厅中选择一家用餐,你会选择哪一家?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ) (A>0,ω>0,0<φ<π),其导函数f′(x)的部分图象如图所示,则函数f(x)的解析式为( )

A.f(x)=4sin( x+ π)
B.f(x)=4sin( x+
C.f(x)=4sin( x+
D.f(x)=4sin( x+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆G: 的两个焦点分别为F1和F2 , 短轴的两个端点分别为B1和B2 , 点P在椭圆G上,且满足|PB1|+|PB2|=|PF1|+|PF2|.当b变化时,给出下列三个命题: ①点P的轨迹关于y轴对称;
②存在b使得椭圆G上满足条件的点P仅有两个;
③|OP|的最小值为2,
其中,所有正确命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 下列四个命题: ①f(f(1))>f(3);
x0∈(1,+∞),
③f(x)的极大值点为x=1;
x1 , x2∈(0,+∞),|f(x1)﹣f(x2)|≤1
其中正确的有 . (写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学高一、高二年级各有8个班,学校调查了春学期各班的文学名著阅读量(单位:本),并根据调查结果,得到如下所示的茎叶图:
为鼓励学生阅读,在高一、高二两个两个年级中,学校将阅读量高于本年级阅读量平均数的班级命名为该年级的“书香班级”.
(1)当a=4时,记高一年级“书香班级”数为m,高二年级的“书香班级”数为n,比较m,n的大小关系;
(2)在高一年级8个班级中,任意选取两个,求这两个班级均是“书香班级”的概率;
(3)若高二年级的“书香班级”数多于高一年级的“书香班级”数,求a的值(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将一张边长为12cm的正方形纸片按如图(1)所示阴影部分裁去四个全等的等腰三角形,将余下部分沿虚线折叠并拼成一个有底的正四棱锥模型,如图(2)所示放置.如果正四棱锥的主视图是等边三角形,如图(3)所示,则正四棱锥的体积是(
A. cm3
B. cm3
C. cm3
D. cm3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .
(1)若 ,求函数 的极值;
(2)设函数 ,求函数 的单调区间;
(3)若在区间 上不存在 ,使得 成立,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log2(3+x)﹣log2(3﹣x),
(1)求函数f(x)的定义域,并判断函数f(x)的奇偶性;
(2)已知f(sinα)=1,求α的值.

查看答案和解析>>

同步练习册答案