精英家教网 > 高中数学 > 题目详情
已知f(x)=2cos(ωx+θ),(x∈R,0≤θ≤
π
2
)
,g(x)=ex-x2+2ax-1,(x∈R,a为实数),y=f(x)的图象与y轴交于点(0,
3
)
,且在该点处切线的斜率为-2.
(I)若点A(
π
2
,0)
,点P是函数y=f(x)图象上一点,Q(x0,y0)是PA的中点,当y0=
3
2
x0∈[
π
2
,π]
时,求x0的值;
(II)当a>1+ln2时,试问:是否存在曲线y=f(x)与y=g(x)的公切线?并证明你的结论.
分析:(I)根据在该点(0,
3
)
处切线的斜率为-2建立等式关系可求出ω、θ从而求出f(x),利用中点坐标公式建立等式关系,即可求出x0的值;
(II)先求出曲线f(x)的切线斜率的取值范围,然后求出曲线y=g(x)的切线斜率的取值范围,看其是否有交集,从而判定是否存在曲线y=f(x)与y=g(x)的公切线.
解答:解:(I)由题意可知
f′(0)=-2ωsinθ=-2
2cosθ=
3
0≤θ≤
π
2
可得:θ=
π
6
,ω=2

f(x)=2cos(2x+
π
6
)

设P点坐标为(t,2cos(2t+
π
6
))
,已知A(
π
2
,0)

所以Q(x0,y0)满足
x0=
t+
π
2
2
y0=cos(2t+
π
6
)
又由y0=
3
2
x0∈[
π
2
,π]
得到t=π或t=
6

所以x0=
4
x0=
3

(II)因为f′(x)=-4sin(2x+
π
6
)
所以曲线f(x)的切线斜率k1∈[-4,4]
又g′(x)=ex-2x+2a
∴g″(x)=ex-2
∴令g″(x)=0可得x=ln2处g′(x)取到最小值g′(ln2)=eln2-2ln2+2a>2-2ln2+2+2ln2=4
所以曲线y=g(x)的切线斜率k2>4,故不存在两曲线的共切线.
点评:本题主要考查了利用导数研究在某点处的切线,以及导数的几何意义和公切线问题,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在下列命题中:①已知两条不同直线m、n两上不同平面α,β,m⊥α,n⊥β,m⊥n,则α⊥β;②函数y=sin(2x-
π
6
)图象的一个对称中心为点(
π
3
,0);③若函数f(x)在R上满足f(x+1)=
1
f(x)
,则f(x)是周期为2的函数;④在△ABC中,若
OA
+
OB
=2
CO
,则S△ABC=S△BOC其中正确命题的序号为
 

查看答案和解析>>

同步练习册答案