精英家教网 > 高中数学 > 题目详情

【题目】在边长为2的菱形中,,将菱形沿对角线折起,使二面角的大小为,则所得三棱锥的外接球表面积为(

A.B.C.D.

【答案】B

【解析】

由已知可得都是边长为的等边三角形,由菱形的对角线互相垂直,可得为二面角的平面角,即,作出图形,找出三棱锥的外接球球心,利用四点共圆结合正弦定理求解三棱锥的外接球的半径,代入球的表面积公式可得结果.

由于四边形是边长为的菱形,且,则

所以,都是边长为的等边三角形,

由于菱形的对角线互相垂直,则

所以,为二面角的平面角,即

过点作平面的垂线,垂足为点,则点在线段上,

,可得

是等边三角形,所以,

的外心为点的中点

在平面内,过点分别作平面的垂线交于点

则点为三棱锥的外接球的球心,则

,则

由于四点共圆,可得

所以,三棱锥的外接球的表面积为.

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知三棱柱的侧棱和底面垂直,且所有顶点都在球O的表面上,侧面的面积为.给出下列四个结论:

①若的中点为E,则平面

②若三棱柱的体积为,则到平面的距离为3

③若,则球O的表面积为

④若,则球O体积的最小值为.

当则所有正确结论的序号是( )

A.①④B.②③C.①②③D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正四棱锥中,已知异面直线所成的角为,给出下面三个命题:

:若,则此四棱锥的侧面积为

:若分别为的中点,则平面

:若都在球的表面上,则球的表面积是四边形面积的倍.

在下列命题中,为真命题的是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线为参数,),曲线为参数),相切于点,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.

1)求的极坐标方程及点的极坐标;

2)已知直线与圆交于两点,记的面积为的面积为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新冠肺炎疫情这只黑天鹅的出现,给经济运行带来明显影响,住宿餐饮、文体娱乐、交通运输、旅游等行业受疫情影响严重.随着复工复产的有序推动,我市某西餐厅推出线上促销活动:

A套餐(在下列食品中63

西式面点:蔓越莓核桃包、南瓜芝土包、黑列巴、全麦吐司;

中式面点:豆包、桂花糕

B套餐:酱牛肉、老味烧鸡熟食类组合.

复工复产后某一周两种套餐的日销售量(单位:份)如下:

星期一

星期二

星期三

星期四

星期五

星期六

星期日

A套餐

11

12

14

18

22

19

23

B套餐

6

13

15

15

37

20

41

1)根据上面一周的销量,计算A套餐和B套餐的平均销量和方差,并根据所得数据评价两种套餐的销售情况;

2)若某顾客购买一份A套餐,求他所选的面点中至少一种中式面点的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱柱中,平面平面,点F为棱的中点,点E为线段上的动点.

1)求证:

2)若直线与平面所成角的正弦值为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC的内角ABC的对边分别为abc,已知2a2bcosC+csinB

(Ⅰ)求tanB

(Ⅱ)若CABC的面积为6,求BC

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,过点的直线两点,过点分别作的切线,两切线相交于点.

1)记直线的斜率分别为,证明:为定值;

2)记的面积为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)若函数在点处的切线的斜率为,证明:当时,.

查看答案和解析>>

同步练习册答案