【题目】在边长为2的菱形中,,将菱形沿对角线折起,使二面角的大小为,则所得三棱锥的外接球表面积为( )
A.B.C.D.
【答案】B
【解析】
由已知可得、都是边长为的等边三角形,由菱形的对角线互相垂直,可得为二面角的平面角,即,作出图形,找出三棱锥的外接球球心,利用四点共圆结合正弦定理求解三棱锥的外接球的半径,代入球的表面积公式可得结果.
由于四边形是边长为的菱形,且,则,
所以,、都是边长为的等边三角形,
由于菱形的对角线互相垂直,则,,
所以,为二面角的平面角,即,
过点作平面的垂线,垂足为点,则点在线段上,
由,,可得,
且是等边三角形,所以,,
设的外心为点,的中点,
在平面内,过点、分别作平面、的垂线交于点,
则点为三棱锥的外接球的球心,则,,
,则,
由于、、、四点共圆,可得,
所以,三棱锥的外接球的表面积为.
故选:B.
科目:高中数学 来源: 题型:
【题目】已知三棱柱的侧棱和底面垂直,且所有顶点都在球O的表面上,侧面的面积为.给出下列四个结论:
①若的中点为E,则平面;
②若三棱柱的体积为,则到平面的距离为3;
③若,,则球O的表面积为;
④若,则球O体积的最小值为.
当则所有正确结论的序号是( )
A.①④B.②③C.①②③D.①③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正四棱锥中,已知异面直线与所成的角为,给出下面三个命题:
:若,则此四棱锥的侧面积为;
:若分别为的中点,则平面;
:若都在球的表面上,则球的表面积是四边形面积的倍.
在下列命题中,为真命题的是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线:(为参数,),曲线:(为参数),与相切于点,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.
(1)求的极坐标方程及点的极坐标;
(2)已知直线:与圆:交于,两点,记的面积为,的面积为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】新冠肺炎疫情这只“黑天鹅”的出现,给经济运行带来明显影响,住宿餐饮、文体娱乐、交通运输、旅游等行业受疫情影响严重.随着复工复产的有序推动,我市某西餐厅推出线上促销活动:
A套餐(在下列食品中6选3)
西式面点:蔓越莓核桃包、南瓜芝土包、黑列巴、全麦吐司;
中式面点:豆包、桂花糕
B套餐:酱牛肉、老味烧鸡熟食类组合.
复工复产后某一周两种套餐的日销售量(单位:份)如下:
星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期日 | |
A套餐 | 11 | 12 | 14 | 18 | 22 | 19 | 23 |
B套餐 | 6 | 13 | 15 | 15 | 37 | 20 | 41 |
(1)根据上面一周的销量,计算A套餐和B套餐的平均销量和方差,并根据所得数据评价两种套餐的销售情况;
(2)若某顾客购买一份A套餐,求他所选的面点中至少一种中式面点的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知2a=2bcosC+csinB.
(Ⅰ)求tanB;
(Ⅱ)若C,△ABC的面积为6,求BC.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线:,过点的直线交于,两点,过点,分别作的切线,两切线相交于点.
(1)记直线,的斜率分别为,,证明:为定值;
(2)记的面积为,求的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com