精英家教网 > 高中数学 > 题目详情
已知Sn为数列{an}的前n项和,且满足a1=1,anan+1=3n(n∈N+),则S2014=(  )
A、2×31007-2
B、2×31007
C、
32014-1
2
D、
32014+1
2
考点:数列的求和
专题:等差数列与等比数列
分析:由数列递推式得到数列{an}的所有奇数项和偶数项均构成以3为公比的等比数列,分组后利用等比数列的求和公式得答案.
解答: 解:由anan+1=3n,得an-1an=3n-1(n≥2),
an+1
an-1
=3(n≥2)

则数列{an}的所有奇数项和偶数项均构成以3为公比的等比数列,
a2=
3
a1
=3

S2014=
1×(1-31007)
1-3
+
3(1-31007)
1-3
=2×31007-2.
故选:A.
点评:本题考查了等比关系的确定,考查了数列的分组求和与等比数列的前n项和,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列a>0,b>0,a1=1,前P项和Sn=
n+1
2
an

(1)求{an}的通项公式;
(2)求数列{
an
2n
}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线x+y-1=0与椭圆
x2
a2
+
x2
b2
=1(a>b>0)相交于A,B两点,线段AB中点M在直线l:y=
1
2
x上.
(1)若椭圆右焦点关于直线l的对称点在单位圆x2+y2=1上,求椭圆的方程;
(2)过D(0,2)的直线与(1)中的椭圆相交于不同两点E、F,且E在D、F之间,设
DE
DF
,试确定实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)与圆C2:x2+y2=b2,若在椭圆C1上不存在点P,使得由点P所作的圆C2的两条切线互相垂直,则椭圆C1的离心率的取值范围是(  )
A、(0,
2
2
B、(0,
3
2
C、[
2
2
,1)
D、[
3
2
,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在原点,两焦点F1,F2在x轴上,短轴的一个端点为P.
(1)若长轴长为4,焦距为2,求椭圆的标准方程;
(2)若∠F1PF2为直角,求椭圆的离心率;
(3)若∠F1PF2为锐角,求椭圆的离心率的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,在同一个坐标系中,an=f(n)及Sn=g(n)的部分图象如图所示,则(  )
A、当n=4时,Sn取得最大值
B、当n=3时,Sn取得最大值
C、当n=4时,Sn取得最小值
D、当n=3时,Sn取得最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是等差数列,其前n项和为Sn,a3=6,S3=12.
(1)求数列{an}的通项公式;
(2)求前n项和Sn
(3)求证:
1
S1
+
1
S2
+…+
1
Sn
<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

设y1=0.3 
1
3
,y2=0.4 
1
3
,y3=0.4 
1
4
(  )
A、y3<y2<y1
B、y1<y2<y3
C、y2<y3<y1
D、y1<y3<y2

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,an+1=an+2+an,a1=2,a2=5,则 a2014的值是
 

查看答案和解析>>

同步练习册答案