精英家教网 > 高中数学 > 题目详情
9.设全集是实数集R,集合A={x|-1<x<3},集合B={x|m-2<x<m+2},
(1)若A∩B=∅,求实数m的取值范围;
(2)若2∈B,求A∩B.

分析 (1)若A∩B=∅,则m+2≤-1,或m-2≥3,解得:实数m的取值范围;
(2)若2∈B,则:m∈(0,4),结合交集交集的定义,分类讨论,可得A∩B.

解答 解:(1)若A∩B=∅,则m+2≤-1,或m-2≥3,
解得:m∈(-∞,-3]∪[5,+∞),
(2)若2∈B,则m-2<2,且m+2>2,
解得:m∈(0,4),
当m∈(0,1]时,A∩B=(-1,m+2),
当m∈(1,4)时,A∩B=(m-2,3).

点评 本题考查的知识点是集合的交集运算,元素与集合的关系,分类讨论思想,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知a,b为非零实数,则$\frac{a}{b}$+$\frac{b}{a}$的取值范围是(-∞,-2]∪[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在底面是平行四边形的四棱锥S-ABCD中,点E在SD上,且SE:ED=2:1,问:对于SC上的一点F,是否存在过BF的平面平行于平面ACE?若存在,请给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设M={1,2,3},N={2004,2005,2006,2007,2008},映射f:M→N使得任意的x∈M,都有x+f(x)+xf(x)为奇数,这样的映射共有(  )
A.48个B.50个C.52个D.54个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求y=2cos($\frac{π}{5}$-2x)+1的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)是奇函数,g(x)是偶函数,且f(x)+g(x)=x2-x+2,则g(x)的解析式为(  )
A.x2+2B.x2-2C.-x2-xD.x2+x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数f(x)在R上是增函数,则(  )
A.f(-1)<f(0)<f(2)B.f(2)<f(0)<f(-1)C.f(0)<f(-1)<f(2)D.f(2)<f(-1)<f(0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知$|{\vec a}|=1$,$|{\vec b}|=\frac{1}{2}|{\vec a}|$,$|{\vec a-\frac{1}{3}\vec b}|=\frac{{\sqrt{31}}}{6}$,则$\vec a$与$\vec b$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.红、蓝两色车、马、炮棋子各一枚,将这6枚棋子排成一列,记事件:每对同字的棋子中,均为红棋子在前,蓝棋子在后为事件A,则事件A发生的概率为(  )
A.$\frac{1}{20}$B.$\frac{1}{12}$C.$\frac{1}{8}$D.$\frac{1}{6}$

查看答案和解析>>

同步练习册答案