精英家教网 > 高中数学 > 题目详情

椭圆的中心是抛物线的顶点,它的一个焦点与抛物线的焦点重合,它的长轴长是8,则此椭圆的方程是

[  ]

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网下列两题选做一题.
(甲)已知椭圆短轴长为2,中心与抛物线y2=4x的顶点重合,椭圆的一个焦点恰是此抛物线的焦点,求椭圆方程及其长轴的长.
(乙)已知菱形的一对内角各为60°,边长为4,以菱形对角线所在的直线为坐标轴建立直角坐标系,以菱形60°角的两个顶点为焦点,并且过菱形的另外两个顶点作椭圆,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泉州模拟)如果两个椭圆的离心率相等,那么就称这两个椭圆相似.已知椭圆C与椭圆Γ:
x2
8
+
y2
4
=1
相似,且椭圆C的一个短轴端点是抛物线y=
1
4
x2
的焦点.
(Ⅰ)试求椭圆C的标准方程;
(Ⅱ)设椭圆E的中心在原点,对称轴在坐标轴上,直线l:y=kx+t(k≠0,t≠0)与椭圆C交于A,B两点,且与椭圆E交于H,K两点.若线段AB与线段HK的中点重合,试判断椭圆C与椭圆E是否为相似椭圆?并证明你的判断.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省江门市高二(下)调研数学试卷(文科)(解析版) 题型:解答题

在平面直角坐标系xOy中,抛物线C:y2=8x的焦点为F,椭圆Σ的中心在坐标原点,离心率,且F是椭圆Σ的一个焦点.
(1)求椭圆Σ的标准方程;
(2)过F作垂直于x轴的直线,与椭圆Σ相交于A、B两点,试探究在椭圆Σ上是否存在点P,使△PAB为直角三角形.若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省泉州市高三第二次质量检测数学试卷(理科)(解析版) 题型:解答题

如果两个椭圆的离心率相等,那么就称这两个椭圆相似.已知椭圆C与椭圆相似,且椭圆C的一个短轴端点是抛物线的焦点.
(Ⅰ)试求椭圆C的标准方程;
(Ⅱ)设椭圆E的中心在原点,对称轴在坐标轴上,直线l:y=kx+t(k≠0,t≠0)与椭圆C交于A,B两点,且与椭圆E交于H,K两点.若线段AB与线段HK的中点重合,试判断椭圆C与椭圆E是否为相似椭圆?并证明你的判断.

查看答案和解析>>

同步练习册答案