精英家教网 > 高中数学 > 题目详情
设a为常数,当3<a<
134
时,方程lg(x-1)+lg(3-x)=lg(a-x)的实根的个数为
 
分析:把原题转化为求y=(x-1)(3-x)+x与y=a在(1,3)上的交点的个数,把函数化简后借助于图形可得结论.
解答:精英家教网解:方程lg(x-1)+lg(3-x)=lg(a-x)的实根的个数就是(x-1)(3-x)=(a-x)在(1,3)上的实根的个数
即y=(x-1)(3-x)+x与y=a在(1,3)上的交点的个数
∵y=(x-1)(3-x)+x=-(x-
5
2
2+
13
4
,又当x=1时,y=1和x=3时,y=3.
又因为3<a<
13
4

由图得,即y=(x-1)(3-x)+x与y=a在(1,3)上的交点的个数 2个
故答案为  两解.
点评:本题考查根的个数的应用和数形结合思想的应用.,数形结合的应用大致分两类:一是以形解数,即借助数的精确性,深刻性来讲述形的某些属性;二是以形辅数,即借助与形的直观性,形象性来揭示数之间的某种关系,用形作为探究解题途径,获得问题结果的重要工具
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f1(x)=lg|x-p1|,f2(x)=lg(|x-p2|+2)(x∈R,p1,p2为常数)
函数f(x)定义为对每个给定的实数x(x≠p1),f(x)=
f1(x)f1(x)≤f2(x)
f2(x)f2(x)≤f1(x)

(1)当p1=2时,求证:y=f1(x)图象关于x=2对称;
(2)求f(x)=f1(x)对所有实数x(x≠p1)均成立的条件(用p1、p2表示);
(3)设a,b是两个实数,满足a<b,且p1,p2∈(a,b),若f(a)=f(b)求证:函数f(x)在区间[a,b]上单调增区间的长度之和为
b-a
2
.(区间[m,n]、(m,n)或(m,n]的长度均定义为n-m)

查看答案和解析>>

科目:高中数学 来源: 题型:

设a为实常数,函数y=2x2+(x-a)|x-a|.
(1)当x=0时,y≥1,试求实数a的取值范围.
(2)当a=1时,求y在x≥a时的最小值;当a∈R时,试写出y的最小值(不必写出解答过程).
(3)当x∈(a,+∞)时,求不等式y≥1的解集.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f1(x)=lg|x-p1|,f2(x)=lg(|x-p2|+2)(x∈R,p1,p2为常数)
函数f(x)定义为对每个给定的实数x(x≠p1),f(x)=
f1(x)f1(x)≤f2(x)
f2(x)f2(x)≤f1(x)

(1)当p1=2时,求证:y=f1(x)图象关于x=2对称;
(2)求f(x)=f1(x)对所有实数x(x≠p1)均成立的条件(用p1、p2表示);
(3)设a,b是两个实数,满足a<b,且p1,p2∈(a,b),若f(a)=f(b)求证:函数f(x)在区间[a,b]上单调增区间的长度之和为
b-a
2
.(区间[m,n]、(m,n)或(m,n]的长度均定义为n-m)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)在R上有定义,对任何实数a>0和任何实数x,都有f(ax)=af(x).

(1)证明:f(0)=0;

(2)证明f(x)=其中k和h均为常数;

(3)当(2)中的k>0时,设g(x)=+f(x)(x>0),讨论g(x)在(0,+∞)内的单调性并求极值.

查看答案和解析>>

同步练习册答案