精英家教网 > 高中数学 > 题目详情

【题目】数列 满足: 或1().对任意,都存在,使得.,其中 且两两不相等.

(I)若.写出下列三个数列中所有符合题目条件的数列的序号;

①1,1,1,2,2,2;②1,1,1,1,2,2,2,2;③1,l,1,1,1,2,2,2,2

(Ⅱ)记.若,证明:

(Ⅲ)若,求的最小值.

【答案】(Ⅰ) ②③(Ⅱ)见解析(Ⅲ)的最小值为

【解析】试题分析:(Ⅰ)依据定义检验给出的数列是否满足要求条件.(Ⅱ)当时, 都在数列中出现,可以证明至少出现4次,2至少出现2次,这样. (Ⅲ)设出现频数依次为.同(Ⅱ)的证明,可得: ,┄, ,则,我们再构造数列:

,证明该数列满足题设条件,从而的最小值为

解析:(Ⅰ)对于①,,对于 ,不满足要求;对于②,若,则,且彼此相异,若,则,且彼此相异,若,则,且彼此相异,故②符合题目条件;同理③也符合题目条件,故符合题目条件的数列的序号为②③.

注:只得到 ② 或只得到 ③ 给[ 1分],有错解不给分.

(Ⅱ)当时,设数列出现频数依次为,由题意

① 假设,则有(对任意),与已知矛盾,所以.同理可证:

② 假设,则存在唯一的,使得.那么,对,有两两不相等),与已知矛盾,所以.

综上: ,所以

(Ⅲ)设出现频数依次为.同(Ⅱ)的证明,可得: ,┄, ,则

得到的数列为:

下面证明满足题目要求.对,不妨令

① 如果,由于,所以符合条件;

② 如果,由于,所以也成立;

③ 如果,则可选取;同样的,如果

则可选取,使得,且两两不相等;

④ 如果,则可选取,注意到这种情况每个数最多被选取了一次,因此也成立.综上,对任意,总存在,使得,其中且两两不相等.因此满足题目要求,所以的最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2018届吉林省普通中学高三第二次调研】某校冬令营有三名男同学A,B,C和三名女同学X,Y,Z

1)从6人中抽取2人参加知识竞赛,求抽取的2人都是男生的概率;

2)若从这3名男生和3名女生中各任选一名,求这2人中包含A且不包含X的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数),以原点为极点, 轴正半轴为极轴建立极坐标系,曲线的方程为,定点,点是曲线上的动点, 的中点.

(1)求点的轨迹的直角坐标方程;

(2)已知直线轴的交点为,与曲线的交点为,若的中点为,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,二面角的大小为90°

1)求证:

2)试确定的值,使得直线与平面所成的角的正弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在标准温度和大气压下,人体血液中氢离子的物质的量的浓度(单位mol/L,记作和氢氧根离子的物质的量的浓度(单位mol/L,记作的乘积等于常数.已知pH值的定义为,健康人体血液的pH值保持在7.357.45之间,那么健康人体血液中的可以为(参考数据:

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若时取到极值,求的值及的图象在处的切线方程;

(2)若时恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设动点到定点的距离比它到轴的距离大,记点的轨迹为曲线.

(1)求点的轨迹方程;

(2)若圆心在曲线上的动圆过点,试证明圆轴必相交,且截轴所得的弦长为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某三棱锥的三视图如图所示,则该三棱锥最长的棱的棱长为( )

A. 3 B. C. D. 2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为自然对数的底数).

(Ⅰ)当的最小值

(Ⅱ)若函数恰有两个不同极值点

①求的取值范围

②求证:

查看答案和解析>>

同步练习册答案