精英家教网 > 高中数学 > 题目详情
如图,已知定点A(1,0),定圆C:(x+1)2+y2=8,M为圆C上的一个动点,点P在线段AM上,点N在线段CM上,且满足
AM
=2
AP
NP
AM
=0
,则点N的轨迹方程是______.
C(-1,0),∵
AM
=2
AP
,∴P 为AM的中点.∵
NP
AM
=0
,∴NP⊥AM.
故 NP为线段AM的中垂线,∴NM=NA.∵NM+NC=2
2
(半径),∴NA+NC=2
2
>AC=2,
根据椭圆的定义可得,点N的轨迹是以A、C为焦点的椭圆,a=
2
,c=1,∴b=1.
则点N的轨迹方程是
x2
2
+y2=1

故答案为:
x2
2
+y2=1
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左,右两个顶点分别为.曲线是以两点为顶点,离心率为的双曲线.设点在第一象限且在曲线上,直线与椭圆相交于另一点
(1)求曲线的方程;
(2)设两点的横坐标分别为,证明:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面直角坐标系内,动点P到x轴、y轴的距离之积等于1,则点P的轨迹方程是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正方体ABCD-A1B1C1D1的棱长为1,点M在AB上,且AM=
1
3
,点P是平面ABCD上的动点,且动点P到直线A1D1的距离与动点P到点M的距离的平方差为1,则动点的轨迹是(  )
A.圆B.抛物线C.双曲线D.直线

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

动圆C与定圆C1:(x+3)2+y2=9,C2:(x-3)2+y2=1都外切,求动圆圆心C的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

与y轴相切且和半圆x2+y2=4(0≤x≤2)内切的动圆圆心的轨迹方程是(  )
A.y2=4(x+1)(0<x≤1)B.y2=4(x-1)(0<x≤1)
C.y2=-4(x-1)(0<x≤1)D.y2=-2(x-1)(0<x≤1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设直线y=ax+b与双曲线3x2-y2=1交于A、B,且以AB为直径的圆过原点,求点P(a,b)的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知l1和l2是平面内互相垂直的两条直线,它们的交点为A,异于点A的两动点B、C分别在l1、l2上,且BC=3,则过A、B、C三点的动圆所形成的图形面积为(  )
A.6πB.9πC.
2
D.
9
4
π

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设A为圆(x-1)2+y2=1上的动点,PA是圆的切线且|PA|=1,则P点的轨迹方程(  )
A.(x-1)2+y2=4B.(x-1)2+y2=2C.y2=2xD.y2=-2x

查看答案和解析>>

同步练习册答案