ÒÑÖªº¯Êýf(x)=
x+1-a
a-x
(a¡ÊR)
£¬
£¨1£©Ö¤Ã÷º¯Êýy=f£¨x£©µÄͼÏó¹ØÓڵ㣨a£¬-1£©³ÉÖÐÐĶԳÆͼÐΣ»
£¨2£©µ±x¡Ê[a+1£¬a+2]ʱ£¬ÇóÖ¤£ºf£¨x£©¡Ê[-2£¬-
3
2
]
£»
£¨3£©ÎÒÃÇÀûÓú¯Êýy=f£¨x£©¹¹ÔìÒ»¸öÊýÁÐ{xn}£¬·½·¨ÈçÏ£º¶ÔÓÚ¸ø¶¨µÄ¶¨ÒåÓòÖеÄx1£¬Áîx2=f£¨x1£©£¬x3=f£¨x2£©£¬¡­£¬xn=f£¨xn-1£©£¬¡­ÔÚÉÏÊö¹¹ÔìÊýÁеĹý³ÌÖУ¬Èç¹ûxi£¨i=2£¬3£¬4£¬¡­£©ÔÚ¶¨ÒåÓòÖУ¬¹¹ÔìÊýÁеĹý³Ì½«¼ÌÐøÏÂÈ¥£»Èç¹ûxi²»ÔÚ¶¨ÒåÓòÖУ¬Ôò¹¹ÔìÊýÁеĹý³ÌÍ£Ö¹£®
£¨i£©Èç¹û¿ÉÒÔÓÃÉÏÊö·½·¨¹¹Ôì³öÒ»¸ö³£ÊýÁÐ{xn}£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£»
£¨ii£©Èç¹ûÈ¡¶¨ÒåÓòÖÐÈÎÒ»Öµ×÷Ϊx1£¬¶¼¿ÉÒÔÓÃÉÏÊö·½·¨¹¹Ôì³öÒ»¸öÎÞÇîÊýÁÐ{xn}£¬ÇóʵÊýaµÄÖµ
£¨1£©ÉèP£¨xo£¬yo£©ÊǺ¯Êýy=f£¨x£©Í¼ÏóÉÏÒ»µã£¬Ôòyo=
xo+1-a
a-xo
£¬
µãP¹ØÓÚ£¨a£¬-1£©µÄ¶Ô³ÆµãP'£¨2a-x0£¬-2-y0£©£®
¡ßf(2a-xo)=
2a-x0+1-a
a-2a+x0
=
a-x0+1
x0-a
£¬-2-yo=
a-x0+1
x0-a

¡à-2-y0=f£¨2a-x0£©£®¼´P¡äµãÔÚº¯Êýy=f£¨x£©µÄͼÏóÉÏ£®
ËùÒÔ£¬º¯Êýy=f£¨x£©µÄͼÏó¹ØÓڵ㣨a£¬-1£©³ÉÖÐÐĶԳÆͼÐÎ.(2)¡ß[f(x)+2][f(x)+
3
2
]=
a-x+1
a-x
a+2-x
2(a-x)
=
(x-a-1)(x-a-2)
2(a-x)2
.

ÓÖx¡Ê[a+1£¬a+2]£¬¡à£¨x-a-1£©£¨x-a-2£©¡Ü0.2£¨a-x£©2£¾0£¬
¡à[f(x)+2][f(x)+
3
2
]¡Ü0£¬¡à-2¡Üf(x)¡Ü-
3
2
.


£¨3£©£¨i£©¸ù¾ÝÌâÒ⣬ֻÐèx¡Ùaʱ£¬f£¨x£©=xÓнâ.¼´
x+1-a
a-x
=x
Óн⣬
¼´x2+£¨1-a£©x+1-a=0Óв»µÈÓÚaµÄ½â
£®¡à¢Ù¡÷£¾0»ò¢Ú¡÷=0²¢ÇÒx¡Ùa£¬
¢ÙÓÉ¡÷£¾0µÃa£¼-3»òa£¾1£¬¢ÚÓÉ¡÷=0µÃa=-3»òa=1£¬
´Ëʱ£¬x·Ö±ðΪ-2»ò0£®·ûºÏÌâÒ⣮×ÛÉÏ£¬a¡Ü-3»òa¡Ý1£®
£¨ii£©¸ù¾ÝÌâÒ⣬֪£ºx¡Ùaʱ£¬
x+1-a
a-x
=a
Î޽⣬
¼´x¡Ùaʱ£¬£¨1+a£©x=a2+a-1Î޽⣬ÓÉÓÚx=a²»ÊÇ·½³Ì£¨1+a£©x=a2+a-1µÄ½â£¬
ËùÒÔ£¬¶ÔÓÚÈÎÒâx¡ÊR£®£¨1+a£©x=a2+a-1Î޽⣮¡àa=-1£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf(x)=x-2m2+m+3(m¡ÊZ)Ϊżº¯Êý£¬ÇÒf£¨3£©£¼f£¨5£©£®
£¨1£©ÇómµÄÖµ£¬²¢È·¶¨f£¨x£©µÄ½âÎöʽ£»
£¨2£©Èôg£¨x£©=loga[f£¨x£©-ax]£¨a£¾0ÇÒa¡Ù1£©£¬ÊÇ·ñ´æÔÚʵÊýa£¬Ê¹g£¨x£©ÔÚÇø¼ä[2£¬3]ÉϵÄ×î´óֵΪ2£¬Èô´æÔÚ£¬ÇëÇó³öaµÄÖµ£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•ÉϺ£Ä£Ä⣩ÒÑÖªº¯Êýf(x)=(
x
a
-1)2+(
b
x
-1)2£¬x¡Ê(0£¬+¡Þ)
£¬ÆäÖÐ0£¼a£¼b£®
£¨1£©µ±a=1£¬b=2ʱ£¬Çóf£¨x£©µÄ×îСֵ£»
£¨2£©Èôf£¨a£©¡Ý2m-1¶ÔÈÎÒâ0£¼a£¼bºã³ÉÁ¢£¬ÇóʵÊýmµÄÈ¡Öµ·¶Î§£»
£¨3£©Éèk¡¢c£¾0£¬µ±a=k2£¬b=£¨k+c£©2ʱ£¬¼Çf£¨x£©=f1£¨x£©£»µ±a=£¨k+c£©2£¬b=£¨k+2c£©2ʱ£¬¼Çf£¨x£©=f2£¨x£©£®
ÇóÖ¤£ºf1(x)+f2(x)£¾
4c2
k(k+c)
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£ºÕã½­Ê¡¶«ÑôÖÐѧ¸ßÈý10Ô½׶ÎÐÔ¿¼ÊÔÊýѧÀí¿ÆÊÔÌâ ÌâÐÍ£º022

ÒÑÖªº¯Êýf(x)µÄͼÏñÔÚ[a£¬b]ÉÏÁ¬Ðø²»¶Ï£¬f1(x)£½min{f(t)|a¡Üt¡Üx}(x¡Ê[a£¬b])£¬f2(x)£½max{f(t)|a¡Üt¡Üx}(x¡Ê[a£¬b])£¬ÆäÖУ¬min{f(x)|x¡ÊD}±íʾº¯Êýf(x)ÔÚDÉϵÄ×îСֵ£¬max{f(x)|x¡ÊD}±íʾº¯Êýf(x)ÔÚDÉϵÄ×î´óÖµ£¬Èô´æÔÚ×îСÕýÕûÊýk£¬Ê¹µÃf2(x)£­f1(x)¡Ük(x£­a)¶ÔÈÎÒâµÄx¡Ê[a£¬b]³ÉÁ¢£¬Ôò³Æº¯Êýf(x)Ϊ[a£¬b]Éϵġ°k½×ÊÕËõº¯Êý¡±£®ÒÑÖªº¯Êýf(x)£½x2£¬x¡Ê[£­1£¬4]Ϊ[£­1£¬4]Éϵġ°k½×ÊÕËõº¯Êý¡±£¬ÔòkµÄÖµÊÇ_________£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£ºÉϺ£Ä£Äâ ÌâÐÍ£º½â´ðÌâ

ÒÑÖªº¯Êýf(x)=(
x
a
-1)2+(
b
x
-1)2£¬x¡Ê(0£¬+¡Þ)
£¬ÆäÖÐ0£¼a£¼b£®
£¨1£©µ±a=1£¬b=2ʱ£¬Çóf£¨x£©µÄ×îСֵ£»
£¨2£©Èôf£¨a£©¡Ý2m-1¶ÔÈÎÒâ0£¼a£¼bºã³ÉÁ¢£¬ÇóʵÊýmµÄÈ¡Öµ·¶Î§£»
£¨3£©Éèk¡¢c£¾0£¬µ±a=k2£¬b=£¨k+c£©2ʱ£¬¼Çf£¨x£©=f1£¨x£©£»µ±a=£¨k+c£©2£¬b=£¨k+2c£©2ʱ£¬¼Çf£¨x£©=f2£¨x£©£®
ÇóÖ¤£ºf1(x)+f2(x)£¾
4c2
k(k+c)
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2009-2010ѧÄêºÓÄÏÊ¡Ðí²ýÊг¤¸ðÈý¸ß¸ßÈýµÚÆߴο¼ÊÔÊýѧÊÔ¾í£¨Àí¿Æ£©£¨½âÎö°æ£© ÌâÐÍ£ºÑ¡ÔñÌâ

ÒÑÖªº¯Êýf£¨x£©¡¢g£¨x£©£¬ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨ £©
A£®f£¨x£©ÊÇÆ溯Êý£¬g£¨x£©ÊÇÆ溯Êý£¬Ôòf£¨x£©+g£¨x£©ÊÇÆ溯Êý
B£®f£¨x£©ÊÇżº¯Êý£¬g£¨x£©ÊÇżº¯Êý£¬Ôòf£¨x£©+g£¨x£©ÊÇżº¯Êý
C£®f£¨x£©ÊÇÆ溯Êý£¬g£¨x£©ÊÇżº¯Êý£¬Ôòf£¨x£©+g£¨x£©Ò»¶¨ÊÇÆ溯Êý»òżº¯Êý
D£®f£¨x£©ÊÇÆ溯Êý£¬g£¨x£©ÊÇżº¯Êý£¬Ôòf£¨x£©+g£¨x£©¿ÉÒÔÊÇÆ溯Êý»òżº¯Êý

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸