精英家教网 > 高中数学 > 题目详情

设函数f(x),对任意的实数xy,有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,则f(x)在区间[a,b]上

[  ]

A.有最大值f(a)

B.有最小值f(a)

C.有最大值

D.有最小值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数  f(x)=x2-bx+
c24

(1)若b和c分别是先后抛掷一枚骰子得到的点数,求对任意x∈R,f(x)>0恒成立的概率.
(2)若b是从区间[0,8](3)任取得一个数,c是从[0,6](4)任取的一个数,求函数f(x)的图象与x轴有交点的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

若a是从1,2,3三个数中任取的一个数,b是从2,3,4,5四个数中任取的一个数,
(1)有序数对(a,b)共有多少个?将结果列举出来.
(2)求
a
b
-1
成立的概率.
(3)设函数f(x)=
x2+(a+1)x+a
x
(x>0)
,求f(x)>b恒成立的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义在D上的函数y=f(x),若同时满足①存在闭区间[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c(c是常数);②对于D内任意x2,当x2∉[a,b]时总有f(x2)>c;则称f(x)为“平底型”函数.
(1)判断f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函数?简要说明理由;
(2)设f(x)是(1)中的“平底型”函数,若|t-k|+|t+k|≥|k|•f(x),(k∈R,k≠0)对一切t∈R恒成立,求实数x的范围;
(3)若F(x)=mx+
x2+2x+n
,x∈[-2,+∞)
是“平底型”函数,求m和n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•南通三模)设f(x)是定义在(0,+∞)的可导函数,且不恒为0,记gn(x)=
f(x)
xn
(n∈N*)
.若对定义域内的每一个x,总有gn(x)<0,则称f(x)为“n阶负函数”;若对定义域内的每一个x,总有[gn(x)]≥0,则称f(x)为“n阶不减函数”([gn(x)]为函数gn(x)的导函数).
(1)若f(x)=
a
x3
-
1
x
-x(x>0)
既是“1阶负函数”,又是“1阶不减函数”,求实数a的取值范围;
(2)对任给的“2阶不减函数”f(x),如果存在常数c,使得f(x)<c恒成立,试判断f(x)是否为“2阶负函数”?并说明理由.

查看答案和解析>>

科目:高中数学 来源:全优设计选修数学-2-2苏教版 苏教版 题型:022

已知函数y=f(x),设x0是定义域内任一点,如果对x0附近的所有点x,都有f(x)<f(x0),则称函数f(x)在点x0处取_________,记作_________.并把x0称为函数f(x)的一个_________.

查看答案和解析>>

同步练习册答案