精英家教网 > 高中数学 > 题目详情
已知a>0,y>0,x,a,b,y成等差数列,x,c,d,y成等比数列,则
(a+b)2
cd
的最小值是
 
考点:基本不等式,等差数列的通项公式,等比数列的通项公式
专题:不等式的解法及应用
分析:x,a,b,y成等差数列,x,c,d,y成等比数列,可得a+b=x+y,cd=xy,代入利用基本不等式的性质即可得出.
解答: 解:∵x,a,b,y成等差数列,x,c,d,y成等比数列,
∴a+b=x+y,cd=xy,
(a+b)2
cd
=
(x+y)2
xy
4xy
xy
=4,当且仅当x=y>0取等号.
故答案为:4.
点评:本题考查了等差数列、等比数列、基本不等式的性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
a
=(-
1
2
3
2
),
OA
=
a
-
b
OB
=
a
+
b
,若△OAB是以O为直角顶点的等腰直角三角形,则△AOB的面积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
b
是单位向量,
a
b
=0,若向量
c
与向量
a
b
共面,且满足|
a
-
b
-
c
|=1,则|
c
|的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=5sinx•cosx-5
3
cos2x+
5
2
3
(x∈R).求:
(1)f(x)的最小正周期;
(2)f(x)的单调区间;
(3)f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,若a4=4,则此数列的前7项和为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若任意的实数a≤-1,恒有a•2b-b-3a≥0成立,则实数b的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若方程ln(x+1)+2x-1=0的根为x=m,则(  )
A、0<m<1
B、1<m<2
C、2<m<3
D、3<m<4

查看答案和解析>>

科目:高中数学 来源: 题型:

某商场在元旦期间开展某商品的促销活动,该商品每件进价为80元,销售价为120元,当一次购买超100件时,每多购一件,所购的全部商品的单价就降低0.1元,但最低购买不能低于100元.
(1)当一次购买量至少为多少件时,每件商品的实际购买价为100元?
(2)当一次订购量为x件时,每件商品的实际购买价为y元,写出函数y=f(x)的表达式;
(3)在顾客一次购买量不超过300件的情况下,求使商场获得最大利润的购买量及最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前n项和为Sn,且S4=16,S6=36.
(1)求an
(2)设数列{bn}满足bn=qan(q∈R,q>0),Tn=
1
b1b2
+
1
b2b3
+…+
1
bnbn+1
,求Tn

查看答案和解析>>

同步练习册答案