精英家教网 > 高中数学 > 题目详情
过点M(-2,0)的直线l与椭圆x2+2y2=2交于P1,P2,线段P1P2的中点为P.设直线l的斜率为k1(k1≠0),直线OP(O为坐标原点)的斜率为k2,则k1k2等于(  )
A.-2B.2C.-D.
C
设P1(x1,y1),P2(x2,y2),P(x0,y0),则x12+2y12=2,x22+2y22=2,两式作差得x12-x22+2(y12-y22)=0,故k1=-=-,又k2,∴k1k2=-
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设椭圆的左、右焦点分别为,,右顶点为A,上顶点为B.已知=.
(1)求椭圆的离心率;
(2)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点,经过点的直线与该圆相切与点M,=.求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知圆A:(x+2)2+y2=36,圆A内一定点B(2,0),圆P过B点且与圆A内切,则圆心P的轨迹为(  )
A.圆B.椭圆C.直线D.以上都不对

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线与椭圆的离心率互为倒数,则(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若直线mx+ny=4与⊙O:x2+y2=4没有交点,则过点P(m,n)的直线与椭圆=1的交点个数是(  )
A.至多为1B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆=1与双曲线=1(m,n,p,q均为正数)有共同的焦点F1,F2,P是两曲线的一个公共点,则·=(  )
A.p2-m2B.p-mC.m-pD.m2-p2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知P为椭圆=1上的一点,M,N分别为圆(x+3)2+y2=1和圆(x-3)2+y2=4上的点,则|PM|+|PN|的最小值为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆C:=1(b>0),直线l:y=mx+1,若对任意的m∈R,直线l与椭圆C恒有公共点,则实数b的取值范围是(  )
A.[1,4)B.[1,+∞)
C.[1,4)∪(4,+∞)D.(4,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆经过点,其离心率
(1)求椭圆的方程;
(2)过坐标原点作不与坐标轴重合的直线交椭圆两点,过轴的垂线,垂足为,连接并延长交椭圆于点,试判断随着的转动,直线的斜率的乘积是否为定值?说明理由.

查看答案和解析>>

同步练习册答案