设函数.
(1)求函数在上的值域;
(2)证明对于每一个,在上存在唯一的,使得;
(3)求的值.
(1) ;(2)证明见解析;(3)当时,为,当且时,为.
【解析】
试题分析:(1)由于可以看作为的二次函数,故可利用换元法借助二次函数知识求出值域;(2)这类问题的常用方法是证明在区间是单调的,且或者或,即可得证;本题中证时也可数学归纳法证明;(3)要求的值,注意分类讨论,时直接得结论,那么求时,只要用分组求和即可,在时,中除第一项外是一个公比不为1的等比数列的和,因此先求出
,同样在求时用分组求和的方法可求得结论.
试题解析:(1),由 令,.
,在上单调递增,在上的值域为. 4分
(2)对于,有,,从而,,,在上单调递减, ,在上单调递减.
又.
. 7分
当时,
(注用数学归纳法证明相应给分)
又,即对于任意自然数有
对于每一个,存在唯一的,使得 11分
(3).
当时,.
. 14分
当且时,.
18分
考点:(1)换元法与二次函数的值域;(2)函数的零点;(3)分类讨论与分组求和.
科目:高中数学 来源: 题型:
px+1 |
x+1 |
1 |
2 |
n |
cn |
-1 |
anSn2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
2 |
x |
2 |
x |
2 |
π |
8 |
π |
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
1 | an |
查看答案和解析>>
科目:高中数学 来源:2013-2014学年山东省青岛市高三3月统一质量检测考试(第二套)理科数学试卷(解析版) 题型:解答题
已知函数.
(1)求的最小值;
(2)当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间.设,试问函数在上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com