精英家教网 > 高中数学 > 题目详情
11.如图,已知M(x0,y0)是椭圆C:$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{3}$=1上的任一点,从原点O向圆M:(x-x02+(y-y02=2作两条切线,分别交椭圆于点P、Q.
(1)若直线OP,OQ的斜率存在,并记为k1,k2,求证:k1k2为定值.
(2)试问OP2+OQ2是否为定值?若是,求出该值;若不是,说明理由.

分析 (1)设直线OP:y=k1x,OQ:y=k2x,P(x1,y1),Q(x2,y2),设过原点圆(x-x02+(y-y02=2的切线方程为y=kx,运用直线和圆相切的条件:d=r,再由二次方程的韦达定理,即可得到定值-$\frac{1}{2}$;
(2)联立直线OP、OQ方程和椭圆方程,求得P,Q的坐标,运用韦达定理,化简整理,即可得到定值9.

解答 解:(1)因为直线OP:y=k1x,OQ:y=k2x,与圆R相切,
由直线和圆相切的条件:d=r,
可得$\frac{|{k}_{1}{x}_{0}-{y}_{0}|}{\sqrt{1+{{k}_{1}}^{2}}}$=$\frac{|{k}_{2}{x}_{0}-{y}_{0}|}{\sqrt{1+{{k}_{2}}^{2}}}$=$\sqrt{2}$,
平方整理,可得k12(2-x02)+2k1x0y0+2-y02=0,
k22(2-x02)+2k2x0y0+2-y02=0,
所以k1,k2是方程k2(2-x02)+2kx0y0+2-y02=0的两个不相等的实数根,
k1•k2=$\frac{2-{{y}_{0}}^{2}}{2-{{x}_{0}}^{2}}$,
因为点R(x0,y0)在椭圆C上,
所以$\frac{{{x}_{0}}^{2}}{6}$+$\frac{{{y}_{0}}^{2}}{3}$=1,
即 y02=3(1-$\frac{{{x}_{0}}^{2}}{6}$)=3-$\frac{1}{2}$•x02
所以k1k2=$\frac{2-3+\frac{1}{2}{{x}_{0}}^{2}}{2-{{x}_{0}}^{2}}$=-$\frac{1}{2}$为定值; 
(3)OP2+OQ2是定值,定值为9.
理由如下:设P(x1,y1),Q(x2,y2),
联立 $\left\{\begin{array}{l}{y={k}_{1}x}\\{{x}^{2}+2{y}^{2}=6}\end{array}\right.$,解得x12=$\frac{6}{1+2{{k}_{1}}^{2}}$,y12=$\frac{6{{k}_{1}}^{2}}{1+2{{k}_{1}}^{2}}$,
所以x12+y12=$\frac{6(1+{{k}_{1}}^{2})}{1+2{{k}_{1}}^{2}}$,
同理得x22+y22=$\frac{6(1+{{k}_{2}}^{2})}{1+2{{k}_{2}}^{2}}$,
由k1k2=-$\frac{1}{2}$,
所以OP2+OQ2=x12+y12+x22+y22=$\frac{6(1+{{k}_{1}}^{2})}{1+2{{k}_{1}}^{2}}$+$\frac{6(1+{{k}_{2}}^{2})}{1+2{{k}_{2}}^{2}}$=$\frac{6(1+{{k}_{1}}^{2})}{1+2{{k}_{1}}^{2}}$+$\frac{6(1+4{{k}_{1}}^{2})}{2+4{{k}_{1}}^{2}}$
=$\frac{9+18{{k}_{1}}^{2}}{1+2{{k}_{1}}^{2}}$=9.
故OP2+OQ2为定值9.

点评 本题考查椭圆的方程和性质,主要考查椭圆的方程的运用,以及直线和圆相切的条件,考查化简运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.若抛物线y2=8x上一点P到其焦点的距离为9,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在△ABC中,∠B=$\frac{π}{2}$,AB=BC=2,P为AB边上一动点,PD∥BC交AC于点D,现将△PDA沿PD翻折至△PDA′,使平面PDA′⊥平面PBCD.
(1)当棱锥A′PBCD的体积最大时,求PA的长;
(2)若点P为AB的中点,E为A′C的中点,求证:DE⊥平面A′BC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}的前n项和为Sn,a1=2,且满足${a_{n+1}}={S_n}+{2^{n+1}}$(n∈N*).
(Ⅰ)证明数列$\{\frac{S_n}{2^n}\}$为等差数列;
(Ⅱ)求S1+S2+…+Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C的中心为坐标原点,焦点在坐标轴上,且经过点M(4,1),N(2,2).
(1)求椭圆C的方程;
(2)若斜率为1的直线l与椭圆C交于不同的两点A,B,且|AB|=$\frac{16\sqrt{3}}{5}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{x+b}{1+{x}^{2}}$是定义在(-1,1)上的奇函数.
(1)求函数f(x)的解析式;
(2)用单调性的定义证明函数f(x)在(-1,1)上是增函数;
(3)解不等式f(2x-1)+f(x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△AOB中.已知|$\overrightarrow{OA}$|=4,|$\overrightarrow{OB}$|=3,∠AOB=60°,则$\overrightarrow{OA}$•$\overrightarrow{OB}$及△AOB的面积分别是(  )
A.6,6B.6,6$\sqrt{3}$C.6,3$\sqrt{3}$D.3,3$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在三棱锥P-ABC中,AB⊥BC,AB=BC=kPA,点O,D分别是AC,PC的中点,OP⊥底面ABC.
(1)求证:OD∥平面PAB;
(2)当k=$\frac{1}{2}$时,求直线PA与平面PBC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知在△ABC中,A,B的坐标分别为(-1,2),(4,3),AC的中点M在y轴上,BC的中点N在x轴上.
(1)求点C的坐标;
(2)求直线MN的方程.

查看答案和解析>>

同步练习册答案